• Title/Summary/Keyword: reactive ion etching (RIE)

Search Result 181, Processing Time 0.032 seconds

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF

Experimental Study of Reactive Ion Etching of Tungsten Films Using $SF_6$ Plasma ($SF_6$플라즈마를 이용한 텅스텐 박막의 반응성이온식각에 관한 실험적 연구)

  • 박상규;서성우;이시우
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.60-74
    • /
    • 1993
  • Experiments of RIE of tungsten films using SF$_{6}$ plasma were conducted to investigate the effect of process parameters on etch rate, uniformity, anisotropy, and selectivity. As power increased, the etch rate increased. Maximum etch rate was obtained at 200mtorr As interelectrode spacing increased the etch rate increased for P < 200mtorr while it decreased for P> 200mtorr. Etch rate was maximum at 20 sccm gas flow rate. As substrate temperature increased, the etch rate increased and activation energy was 0.046 eV. In addition, maximum etch rate was acquired at 20% $O_{2}$ addition. The etch rate slightly increased when Ar was added up to 20% while it continuously decreased when N$_{2}$ was added. Uniformity got improved as pressure decreased and was less than 4% for P <100mtorr. Mass spectrometer was utilized to analyze gas composition and S and F peaks were observed from XPS analysis with increasing power. The anisotropy was better for smaller power and spacing, and lower pressure and temperature. It improved when CH$_{4}$ was added and anisotropic etch profile was obtained when about 10% $O_{2}$ was added. The selectjvity was better for smaller power larger pressure and spacing, and lower temperature. Especially. low temperature processing was proposed as a novel method to improve the anisotropy and selectivity.

  • PDF

대기압 플라즈마 소스로 식각한 Wafer 반사율 분석

  • Gwon, Hui-Tae;Lee, Ye-Seul;Hwang, Sang-Hyeok;Jo, Tae-Hun;Yang, Chang-Sil;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.1-403.1
    • /
    • 2016
  • 일반적으로 실리콘 태양전지의 표면 텍스쳐링 공정방식은 습식 텍스쳐링 방식과 건식 텍스쳐링 방식 2가지로 나뉘어진다. 하지만 현재 습식 텍스쳐링 방식의 경우 Solution을 사용하기 때문에 폐용액으로 인한 환경오염 및 Wafer 오염과 같은 단점을 가지고 있다. 또한 건식 텍스쳐링 방식의 경우는 진공 상태에서 진행되므로 높은 유지 비용이 가장 큰 단점으로 대두 되고 있다. 그러므로 기존의 방식과 다르게 진공을 사용하지 않는 대기압 플라즈마 소스를 텍스쳐링 공정에 적용하였다. 본 연구에서는 대기압 플라즈마 소스로 식각한 Wafer의 반사율을 가스 종류와 유량별 측정하여 분석하였다. 측정된 반사율을 통해 대기압 플라즈마 소스가 텍스쳐링 공정에 적용할 수 있는지 확인하였다.

  • PDF

Experiment of Graphene Etching by Using $O_2$ Plasma Ashing ($O_2$ plasma ashing을 이용한 그라핀 식각 실험)

  • Oh, Se-Man;Kim, Eun-Ho;Park, Jae-Min;Cho, Won-Ju;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.424-424
    • /
    • 2009
  • 그라핀은 밴드갭이 없어서 세미메탈의 성질을 띠므로 초고속 RF 소자에는 응용이 가능하지만, 현재 사용되는 반도체 칩에 사용하기가 불가능하다. 그러나 그라핀을 매우 좁은 리본 형태로 만들 경우 밴드갭이 생기고 이에 따라 반도체특성을 뛰게 된다. 이러한 특성은 시뮬레이션을 통해서만 이해되다가 2007년 P. Kim이 그라핀 나노리본의 밴드캡이 리본의 폭이 좁아짐에 따라 증가함을 실험적으로 최초로 발표하였다. 하지만 그라핀을 나노리본형태로 식각 방법에 대해서는 정확히 연구되지 않았다. 따라서 본 연구에서는 $O_2$ plasma ashing 방법을 이용하여 그라핀을 식각하는 방법에 대해 연구하였다. 먼저 Si기판을 initial cleaning 한 후, highly-oriented pyrolytic graphite(HOPG)를 이용하여 기존의 mechanical exfoliation 방식을 통해 그라핀을 형성하였다. Photo-lithography 방법을 통하여 패터닝한 후, 그라핀을 식각하기 위하여 Reactive Ion Etcher (RIE) system을 이용한 $O_2$ plasma ashing을 50 W에서 1 분간 실시하였다. 다시 image reverse photo-lithography 과정과 E-beam evaporator system를 통해서 Al 전극을 형성하여 graphene-FET를 제작하였고, 광학 현미경과 AFM (Atomic force microscope)을 통해 두께를 확인하였다. 본 연구를 통하여 $O_2$ plasma ashing을 이용하여 쉽게 그라 E을 식각할 수 있음을 확인 하였으며, 제작된 소자의 전기적 특성에 대해서 현재 실험중에 있다.

  • PDF

Profile control of high aspect ratio silicon trench etch using SF6/O2/BHr plasma chemistry (고종횡비 실리콘 트랜치 건식식각 공정에 관한 연구)

  • 함동은;신수범;안진호
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.69-69
    • /
    • 2003
  • 최근 trench capacitor, isolation trench, micro-electromechanical system(MEMS), micro-opto-electromechanical system(MOEMS)등의 다양한 기술에 적용될 고종횡비(HAR) 실리콘 식각기술연구가 진행되어 지고 있다. 이는 기존의 습식식각시 발생하는 결정방향에 따른 식각률의 차이에 관한 문제와 standard reactive ion etching(RIE) 에서의 낮은 종횡비와 식각률에 기인한 문제점들을 개선하기 위해 고밀도 플라즈마를 이용한 건식식각 장비를 사용하여 고종횡비(depth/width), 높은 식각률을 가지는 이방성 트랜치 구조를 얻는 것이다. 초기에는 주로 HBr chemistry를 이용한 연구가 진행되었는데 이는 식각률이 낮고 많은양의 식각부산물이 챔버와 시편에 재증착되는 문제가 발생하였다. 또한 SF6 chemistry의 사용을 통해 식각률의 향상은 가져왔지만 화학적 식각에 기인한 local bowing과 같은 이방성 식각의 문제점들로 인해 최근까지 CHF3, C2F6, C4F8, CF4등의 첨가가스를 이용하여 측벽에 Polymer layer의 식각보호막을 형성시켜 이방성 구조를 얻는 multi_step 공정이 일반화 되었다. 이에 본 연구에서는 SF6 chemistry와 소량의 02/HBr의 첨가가스를 이용한 single_step 공정을 통해 공정의 간소화 및 식각 프로파일을 개선하여 최적의 HAR 실리콘 식각공정 조건을 확보하고자 하였다.

  • PDF

Hydrophobicity and Nanotribological Properties of Silicon Channels coated by Diamond-like Carbon Films

  • Pham, Duc Cuong;Na, Kyung-Hwan;Pham, Van Hung;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.1-5
    • /
    • 2009
  • This paper reports an investigation on nanotribological properties of silicon nanochannels coated by a diamond-like carbon (DLC) film. The nanochannels were fabricated on Si (100) wafers by using photolithography and reactive ion etching (RIE) techniques. The channeled surfaces (Si channels) were then further modified by coating thin DLC film. Water contact angle of the modified and unmodified Si surfaces was examined by an anglemeter using the sessile-drop method. Nanotribological properties, namely friction and adhesion forces, of the Si channels coated with DLC (DLC-coated Si channels) were investigated in comparison with those of the flat Si, DLC-coated flat Si (flat DLC), and Si channels, using an atomic force microscope (AFM). Results showed that the DLC-coated Si channels greatly increased hydrophobicity of silicon surfaces. The DLC coating and Si channels themselves individually reduced adhesion and friction forces of the flat Si. Further, the DLC-coated Si channels exhibited the lowest values of these forces, owing to the combined effect of reduced contact area through the channeling and low surface energy of the DLC. This combined modification could prove a promising method for tribological applications at small scales.

Improvement of Organic Electroluminescent Device Performance by $O_2$ Plasma Treatment of ITO Surface (ITO 박막의 $O_2$ 플라즈마 처리에 의한 휴지전기발광소자의 특성 향상)

  • Yang, Ki-Sung;Kim, Doo-Seok;Kim, Byoung-Sang;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.137-140
    • /
    • 2004
  • We treated $O_2$ plasma on ITO thin film using RIE (Reactive Ion Etching) system, and analyzed the ingredient of ITO thin film according to change of processing conditions. The ingredient analysis of ITO thin film was used by EDS (Energy Dispersive Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy) to compare and analyze the ingredient of bulk and surface. We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by using AFM (Atomic Force Microscope). Finally, we fabricated OLEDs (Organic Light-Emitting Diodes) device using substrate that was treated optimum ITO surface. The result of the study for electrical and optical properties using I V L System (Flat Panel Display Analysis System), we confirmed that electrical properties (I-V) and optical properties (L-V) were improved.

  • PDF

$H_2$ plasma treatment effects on electrical and optical properties of the BZO (ZnO:B) thin films

  • Yoo, Ha-Jin;Son, Chan-Hee;Choi, Joon-Ho;Kang, Jung-Wook;Cho, Won-Tae;Park, Sang-Gi;Lee, Yong-Hyun;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.309-309
    • /
    • 2010
  • We have investigated the effect of $H_2$ plasma treatment on the BZO (ZnO:B, Boron doped ZnO) thin films. The BZO thin films are prepared by LP-MOCVD (Low Pressure Metal Organic Chemical Vapor Deposition) technique and the samples of BZO thin film are performed with $H_2$ plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. After exposing $H_2$ plasma treatment, measurement of transmittance, reflectance and haze spectra in 300~1100 nm, electrical properties as resistivity, mobility and carrier concentration and work function was analysed. Regarding the results of the $H_2$ plasma treatment on the BZO thin films are application to the TCO for solar cells, such as the a-Si thin films solar cell.

  • PDF

A Laterally Driven Electromagnetic Microoptical Switch Using Lorentz force (로렌츠 힘을 이용한 평면구동형 마이크로 광스위치)

  • Han, Jeong-Sam;Ko, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.195-201
    • /
    • 2005
  • A laterally driven electromagnetic microactuator (LaDEM) is presented, and a micro-optical switch is designed and fabricated as a possible application. LaDEM provides parallel actuation of the microactuator to the silicon substrate surface (in-plane mode) by the Lorentz force. Poly-silicon-on-insulator (Poly-SOI) wafers and a reactive ion etching (RIE) process were used to fabricate high-aspect-ratio vertical microstructures, which allowed the equipment of a vertical micro mirror. A fabricated arch-shaped leaf spring has a thickness of $1.8{\mu}m$, width of $16{\mu}m$, and length of $800{\mu}m$. The resistance of the fabricated structure fer the optical switch was approximately 5$\Omega$. The deflection of the leaf springs increases linearly up to about 400 mA and then it demonstrates a buckling behavior around the current value. Owing to this nonlinear phenomenon, a large displacement of $60{\mu}m$ could be measured at 566 mA. The displacement-load relation and some dynamic characteristics are analyzed using the finite element simulations.

Optical properties of the $O_2$ plasma treatment on BZO (ZnO:B) thin films for TCO of a-Si solar cells

  • Yoo, Ha-Jin;Son, Chang-Gil;Cho, Won-Tea;Park, Sang-Gi;Choi, Eun-Ha;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.454-454
    • /
    • 2010
  • In order to achieve a high efficient a-Si solar cell, the TCO (transparent conductive oxide) substrates are required to be a low sheet resistivity, a high transparency, and a textured surface with light trapping effect. Recently, a zinc oxide (ZnO) thin film attracts our attention as new coating material having a good transparent and conductive for TCO of solar cells. In this paper the optical properties of $H_2$ post-treated BZO (boron doped ZnO, ZnO:B) thin film are investigated with $O_2$-plasma treatment. The BZO thin films by MOCVD (Metal Organic Chemical Vapor Deposition) are investigated and the samples of $H_2$ post-treated BZO thin film are tested with $O_2$-plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. We measured the optical properties and surface morphology of BZO thin film with and without $O_2$-plasma treatment. The optical properties such as transmittance, reflectance and haze are measured with integrating sphere and ellipsometer. This result of the BZO thin film with and without $O_2$-plasma treatment is application to the TCO for solar cells.

  • PDF