• 제목/요약/키워드: reaction-diffusion modeling

검색결과 41건 처리시간 0.021초

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Hwa-Woon Lee;Yoo
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.19-33
    • /
    • 1992
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorolog ital processecs . In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification Process through observation is emphasized.

  • PDF

단일 알루미늄 연료 입자의 점화 및 연소 모델링 (Modeling of the Ignition and Combustion of Single Aluminum Particle)

  • 양희성;임지환;김경무;이지형;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF

Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation

  • Salimi, Nahid;Moradi, Sadegh;Fakhar, Afsaneh;Razavi, Seyed Mohammad Reza
    • Membrane and Water Treatment
    • /
    • 제7권5호
    • /
    • pp.463-476
    • /
    • 2016
  • In this study, application of polypropylene hollow fiber membrane contactors for $CO_2$ removal from water in liquid-liquid extraction (LLE) mode was simulated. For this purpose, a steady state 2D mathematical model was developed. In this model axial and radial diffusion was considered to $CO_2$ permeation through the hollow fibers. $CO_2$ laden water is fed at a constant flow rate into the lumen side, permeated through the pores of membrane and at the end of this process, $CO_2$ solution in the lumen side was extracted by means of aqueous diethanolamine (DEA) and chemical reaction. The simulation results were validated with the experimental data and it was found a good agreement between them, which confirmed the reliability of the proposed model. Both simulation and experimental results confirmed the reduction in the percentage of $CO_2$ removal by increment of feed flow rate.

Modeling of time-varying stress in concrete under axial loading and sulfate attack

  • Yin, Guang-Ji;Zuo, Xiao-Bao;Tang, Yu-Juan;Ayinde, Olawale;Ding, Dong-Nan
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.143-152
    • /
    • 2017
  • This paper has numerically investigated the changes of loading-induced stress in concrete with the corrosion time in the sulfate-containing environment. Firstly, based on Fick's law and reaction kinetics, a diffusion-reaction equation of sulfate ion in concrete is proposed, and it is numerically solved to obtain the spatial and temporal distribution of sulfate ion concentration in concrete by the finite difference method. Secondly, by fitting the existed experimental data of concrete in sodium sulfate solutions, the chemical damage of concrete associated with sulfate ion concentration and corrosion time is quantitatively presented. Thirdly, depending on the plastic-damage mechanics, while considering the influence of sulfate attack on concrete properties, a simplified chemo-mechanical damage model, with stress-based plasticity and strain-driven damage, for concrete under axial loading and sulfate attack is determined by introducing the chemical damage degree. Finally, an axially compressed concrete prism immersed into the sodium sulfate solution is regarded as an object to investigate the time-varying stress in concrete subjected to the couplings of axial loading and sulfate attack.

하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용 (Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant)

  • 김준현;한미덕;한영한
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

Styren과 acrylonitrile의 과상 공중합을 위한 회분식 반응기의 모델링 및 모사 (Modeling and simulation of a batch reactor for bulk copolymerization of styrene and acrylonitirle)

  • 유기윤;황우현;백종은;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.207-212
    • /
    • 1994
  • A mathematical model is developed for a batch reactor in which the free radical bulk copolymerization of styrene and acrylonitrile takes place. In this model, we introduce the free volume theory to quantify the diffusion controlled termination and propagation reactions, and develop a model for the chain length dependent termination reaction in the context of the pseudo kinetic rate constant method(PKRCM). The simulation results from this model are found to be in good agreement with experimental data under different copolymerization conditions. The present model can predict both the copolymer composition and the number and weight average molecular weights. These kinetic approaches provide greater insight into the performance of the batch reactor used for the free radical bulk copolymerization of styrene and acrylonitirle.

  • PDF

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Lee Hwa-Woon;Kim Yoo-Keun;Won Gyeong-Mee;Park Jong-Kil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권1호
    • /
    • pp.19-33
    • /
    • 1997
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorological processes. In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification process through observation is emphasized.

  • PDF

전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용 (Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process)

  • 박병흥;정상문
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.291-299
    • /
    • 2018
  • 파이로 공정에서는 사용후핵연료 관리 공정 개발의 일환으로 산화 우라늄을 고온 용융염 전해질계에서 전기화학적 방법으로 환원시키기 위한 전해환원 공정이 개발되고 있다. 이에 따른 전해환원 공정의 반응기 설계를 위해서는 전기화학적 이론에 기초한 모델이 요구되고 있다. 본 연구에서는 상 분리를 설명하는 phase-field 이론에 기초하여 우라늄 산화물의 전해환원 모사를 위한 1차원 모델이 개발되었다. 모델은 우라늄 산화물 내 산소 원소의 확산과 펠렛 표면에서 전기화학 반응 속도를 나타내는 매개변수를 사용하여 외부로부터 내부로 진행되는 전해환원을 잘 모사하고 있으며 계산 결과 전체 전류는 산소원소의 내부 확산에 크게 의존하는 것으로 나타났다. 전해환원 반응에 대한 모델은 대용량 장치 설계에 최적화된 조건 도출에 활용될 것으로 예상되며 장치 설계가 완료되면 공정 연계 모사에 직접 사용될 것으로 기대된다.

광섬유 클래딩용 SiO2 증착을 위한 확산 화염 버너의 부분 예혼합 연소 모델링 (Partial premixed combustion modeling of diffusion flame burner for SiO2 deposition as optical fiber cladding)

  • 박형빈;한윤수
    • 한국결정성장학회지
    • /
    • 제29권6호
    • /
    • pp.365-371
    • /
    • 2019
  • 본 연구에서 SiO2 증착용 확산 화염 버너의 연료와 산소의 비율 변화에 따른 화염의 온도 분포를 전산 유체 해석을 수행하였다. 이는 친환경 원료물질을 이용한 광섬유 제조용 SiO2 프리폼 증착 공정을 시뮬레이션하기 위한 전단계에 해당한다. 예혼합 연소를 모델링하기 위해서 열 유동, 대류 및 화학 반응을 고려하였고 Reynolds-averaged Navier-Stokes 방정식과 k-ω 모델을 사용하였으며, 실제 화염의 온도 분포와 형상을 비교하여 연소 모델링의 적절성을 확인하였다. 결과적으로 화염의 온도 분포는 보조 산소의 유량이 증가하면 노즐 표면으로부터 최고 온도까지의 거리가 증가하는 경향성을 보였다. 또한 혼합 가스의 당량비가 큰 연소 반응에서 불완전 연소로 인한 온도 분포의 폭이 크게 나타나는 것을 확인하였다.

450 mm 웨이퍼 공정용 System의 기하학적 구조에 따른 플라즈마 균일도 모델링 분석 (Plasma Uniformity Numerical Modeling of Geometrical Structure for 450 mm Wafer Process System)

  • 양원균;주정훈
    • 한국진공학회지
    • /
    • 제19권3호
    • /
    • pp.190-198
    • /
    • 2010
  • 450 mm의 웨이퍼 공정용 플라즈마 장비의 개발을 위하여 안테나 형상, 챔버의 직경, 웨이퍼까지의 거리에 따른 플라즈마 균일도를 Ar과 $CF_4$에 대하여 축대칭 2차원으로 수치 모델링하였다. 챔버의 종횡비를 직경, 기판까지의 거리, 배기구의 면적으로 나누어서 결정하고 여기에 안테나 구조를 변경하여서 최적의 플라즈마 균일도를 갖는 조건을 도출하였다. Drift diffusion식과 준중성 조건을 이용한 간략화를 이용하였으며 표면 재결합과 식각 반응을 이온에너지의 함수로 처리하였다. 반응기판 표면에서의 플라즈마 밀도 균일도는 기판 홀더와 챔버 벽면과의 거리, 기판과 소스와의 거리가 멀수록 좋아졌으며, 안테나의 디자인이 4 turn으로 1층인 경우, 두 번째, 네 번째 turn만 사용하여 전류비 1 : 4에서 기판표면에서의 플라즈마 균일도를 4.7%까지 낮출 수 있었다. Ar과 $CF_4$의 반경 방향으로 전자 온도 균일도 50%, 전자 밀도 균일도 19%의 차이가 있었다.