• Title/Summary/Keyword: reaction-bonding

Search Result 386, Processing Time 0.029 seconds

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

Characteristics of PECVD-W thin films deposited on $Si_3N_4$ ($Si_3N_4$상에 PECVD법으로 형성한 텅스텐 박막의 특성)

  • 이찬용;배성찬;최시영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1998
  • The W thin films were deposited on Si3N4 by a PECVD technique. The effects of substrate temperature and gas flow ratio on the properties of the W films were investigated. The deposition of W films were limited by surface reaction at the temperature range of 150>~$250^{\circ}C$, W films had the deposition rate of 150~530 $\AA$/min and stress of 0.85~$14.35\times10 ^9 \textrm {dynes/cm}^2}$ at various substrate temperatures and $SiH_4/WF_6$ flow ratios. $SiH_4/WF_6$ flow ratio affected the deposition rate and stress of the W films, expecially, excessive flow of SiH4 abruptly changed the structure, chemical bonding, and stress of the W films. Among the deposited W films on TiN, Ti, Mo, NiCr and Al adhesion layer, the one on the Al had the best adhesion property.

  • PDF

Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment (실험계획법을 통한 구리 질화물 패시베이션 형성을 위한 아르곤 플라즈마 영향 분석)

  • Park, Hae-Sung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • To protect the Cu surface from oxidation in air, a two-step plasma process using Ar and $N_2$ gases was studied to form a copper nitride passivation as an anti-oxidant layer. The Ar plasma removes contaminants on the Cu surface and it activates the surface to facilitate the reaction of copper and nitrogen atoms in the next $N_2$ plasma process. This study investigated the effect of Ar plasma on the formation of copper nitride passivation on Cu surface during the two-step plasma process through the full factorial design of experiment (DOE) method. According to XPS analysis, when using low RF power and pressure in the Ar plasma process, the peak area of copper oxides decreased while the peak area of copper nitrides increased. The main effect of copper nitride formation in Ar plasma process was RF power, and there was little interaction between plasma process parameters.

Study on Peel Strength Measurement of 3D Printing Composite Fabric by Using FDM (FDM 방식을 활용한 3D 프린팅 복합직물의 박리강력 측정 연구)

  • Han, Yoojung;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • One way of appling 3D printing to garments is through the combination of 3D polymer filaments in textile fabrics. it is essential to understand the interface between the polymer and the 3D composite fabric in order to enhance the adhesion strength between the polymers and the peeling strength between the fabric and the polymer. In this study, the adhesion of composite printed specimens using a combination of fabric and polymers for 3D printing was investigated, and also the change in adhesion was investigated after the composite fabric printed with polymers was subjected to constant pressure. Through this process, the aims to help develop and utilize 3D printing textures by providing basic data to enhance durability of 3D printing composite fabrics. The measure of the peeling strength of the composite fabric prepared by printing on a fabric using PLA, TPU, Nylon polymer was obtained as follows; TPU polymer for 3D printing showed significantly higher peel strength than polymers of composite fabric using PLA and Nylon polymer. In the case of TPU polymer, the adhesive was crosslinked because of the reaction between polyurethane and water on the surface of the fabric, thus increasing the adhesion. It could be observed that the adhesion between the polymer and the fiber is determined more by the mechanical effect rather than by its chemical composition. To achieve efficient bonding of the fibers, it is possible to modify the fiber surface mechanically and chemically, and consider the deposition process in terms of temperature, pressure and build density.

Synthesis and Dissociation Constants of Cationic Rhodium (I)-Triphenylarsine Complexes of Unsaturated Nitriles and Aldehyde

  • Chin, Chong-Shik;Park, Jeong-Han;Shin, Sang-Young;Kim, Choong-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.179-183
    • /
    • 1987
  • Reactions of $Rh(ClO_4)(CO)(AsPh_3)_2$ with unsaturated nitriles and aldehyde, L, produce a series of new cationic rhodium (I) complexes, $[RhL(CO)(AsPh_3)_2]ClO_4$ (L = $CH_2$ = CHCN, $CH_2$ = C($CH_3$)CN, trans-$CH_3CH$ = CHCN, $CH_2$ = CH$CH_2$CN, trans-$C_6H_5CH$ = CHCN, and trans-$C_6H_5CH$ = CHCHD) where L are coordinated through the nitrogen and oxygen, respectively but not through the ${\pi}$-system of the olefinic group. Dissociation constants for the reaction, $[RhL(CO)(AsPh_3)_2]ClO_4$ $\rightleftharpoons$ $Rh(ClO_4)(CO)(AsPh_3)_2$ + L, have been measured to be $1.20{\times}10^{-4}$ M (L = $CH_2$ = CHCN), $1.05{\times}10^{-4}$ M (L = $CH_2$ = C($CH_3$)CN, $3.26{\times}10^{-5}$ M (L = trans-$CH_3$CH = CHCN) and $6.45{\times}10^{-5}$ M (L = $CH_2$ = CH$CH_2$CN) in chlorobenzene at $25^{\circ}C, and higher than those of triphenylphosphine complexes, $[RhL(CO)(AsPh_3)_2]ClO_4$ where L are the corresponding nitriles that are coordinated through the nitrogen atom. The differences in dissociation constants seem to be predominantly due to the differences in ${\Delta}H$ (not due to the differences in ${\Delta}S$). The weaker Rh-N (unsaturated nitriles) bonding in $AsPh_3$ complexes than in $PPh_3$ complexes (based on ${\Delta}H$ values) suggests that the unsaturated nitriles in 2∼5 are good ${\sigma}$-donor and poor ${\pi}$-acceptor.

Conductance Study on the Characteristics of Solution Containing Crown Ethers and Univalent Cation Perchlorates

  • Lee, Shim-Sung;Park, Sung-Oh;Jung, Jong-Hwa;Lee, Bu-Yong;Kim, Si-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.276-281
    • /
    • 1990
  • The equivalent conductance of univalent cation (potassium, silver, thallium and ammonium) perchlorates in methanol containing 18-membered crown ethers, 18-crown-6 (18C6) and 1,10-dithia-18-crown-6 (DT18C6) were measured at different temperatures. The equivalent conductances of ammonium perchlorate were increased by increasing content of DT18C6 exceptionally, due to more favorable solvations than complexations. From the equivalent conductance changes, the formation constants for 1:1 compmlexes have been determined, and the values of enthalpy and entropy changes have been calculated. The complexations of 18C6 and DT18C6 with the univalent cations under investigation are all exothermic and the ${\Delta}$S values are all negative and no considerable differences around 50 J/ (k mol). The selectivity order of 18C6 is $K^+ > Tl^+ > Ag^+ > NH_4^+$, while that of DT18C6 is $Ag^+ > Tl^+ > NH_4^+ > K^+$. By sulfur substitutions in 18C6 result in significant decrease in stability, but the stability of $Ag^+$-DT18C6 complex are $10^4$ times larger than those of $K^+$. This increase of stabilities for $Ag^+$-DT18C6 complex are primary due to the result of favorable exothermic heat of reaction between the polarizable soft cation and soft sulfur centers. In NMR experiment, the stepwise additions of cation perchlorates into crown ether solutions induced two major spectral changes. First, the resonance all shift down field and the cation induced shifts were linear up to 1:1 cation/crown ratio, above which no further changes were observed. On the basis of these results, it could be concluded that 1:1 complex is formed. Second, the magnitudes of cation induced shifts were different each other in same ligand. By addition of silver ion to the solution of DT18C6, the largest shift of proton peak near the sulfur atom was observed. These effects are also arisen from the results of covalent bonding between "soft-soft" interactions.

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

Analysis of cyanide free electroless Au plating solution by capillary elecrophoresis (캐피라리 전기 영동법에 의한 비시안 무전해 Au 도금액의 분석)

  • Han, Jaeho;Kim, DongHyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.120-132
    • /
    • 2022
  • In the non-cyanide-based electroless Au plating solution using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent, analysis of each component constituting the plating solution is essential for the analysis of the reaction mechanism. And component analysis in the plating solution is important for monitoring component changes in the plating process and optimizing the management method. Capillary Electrophoresis (CE) method is rapid, sensitive and quantitative and could be readily applied to analysis of Aun+ ion, complexing agent and reducing agent in electroless Au plating solution. In this study, the capillary electrophoresis method was used to analyze each component in the electroless Au plating solution in order to elucidate the complex bonding form and the plating mechanism of the non-cyanide-based electroless Au plating bath. The purpose of this study was to establish data for optimizing the monitoring and management method of plating solution components to improve the uniformity of precipitation and stability. As a result, it was confirmed that the analysis of thiomalic acid as a complexing agent and Aun+ ions and the analysis of aminoethanethiol as a reducing agent were possible by capillary electrophoresis. In the newly developed non-cyanide-based electroless Au plating solution, it was confirmed that Aun+ ions exist in the form of Au+ having a charge of +1, and that thiomalic acid and Au+ are combined in a molar ratio of 2 : 1. In addition, it was confirmed that aminoethanethiol can form a complex by combining with Au+ ions depending on conditions as well as acting as a reducing agent.

Effect of process pressure and nitrogen addition ratio on the uniformity of hardening depth and surface properties of Cr-Mo low alloy steel in vacuum carburizing (Cr-Mo 저합금강의 진공침탄 공정 압력 및 질소 첨가 비율에 따른 경화깊이 균일도 및 표면 특성 효과)

  • Gi-hoon Kwon;Hyunjun Park;;Young-Kook Lee;Kyoungil Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.94-103
    • /
    • 2023
  • The effects of carburizing pressure and gas ratio on vacuum carburizing properties (uniformity and surface characteristics) have been studied through the analyses of carbon concentration, hardness, surface color, surface roughness and type of carbon bonding. AISI 4115 steel specimens were carburized with various pressures (1, 5, and 10 Torr) at different locations (P1, P2, P3, P4, P5, and P6) inside a furnace held at 950 ℃. Since the carburizing pressure represents the density of the carburizing gas, it plays an important role in improving the carburizing uniformity according to locations in the furnace. As the carburizing pressure increased, the carburizing uniformity according to the sample location was improved, but the surface of the carburized specimen was discolored due to the residual acetylene gas, which does not contribute to the carburizing reaction. Therefore, the carburizing uniformity and surface discoloration have been improved by injecting acetylene gas (carburizing gas) and nitrogen gas (non-reactive gas) in a specific ratio.

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.