• Title/Summary/Keyword: reaction product

Search Result 2,074, Processing Time 0.033 seconds

A Study on Reclamation of Waste Plastic: Plant Design (폐기프라스틱의 재활용에 관한 연구)

  • 김용욱;차시환
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1988
  • This research investigated the condition for plant design on reclamation of waste plastic by heat decomposition. The results were summarized as follows 1. The highest of oil product by heat decomposition is about 54.7%. 2. The optimum reaction temperature is about 300­40$0^{\circ}C$. 3. The optimum reaction time is 2­3 hours. 4. When the flow rate of 8­16 cm/sec in column reactor the yield is maximum. 5. Waste plastics yielded of carbon black product by heat decomposition at the optimum condition is about 23.5%. 6. Calorific values 0:1 were 9820 Kcal/kg.

  • PDF

Photolysis of Aqueous Ammonia in the Absence and the Presence of O₂

  • 박형련;김희정;성아영
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.798-802
    • /
    • 1996
  • The photochemical decomposition of aqueous ammonia in the absence (saturated with argon) and the presence of O2 (saturated with air or oxygen) has been investigated using 184.9 nm UV light. The decomposition of ammonia depended on the concentration of oxygen in the solution. With increasing the concentration of oxygen, the decomposition of ammonia diminishes. Hydrazine is found the major product from the irradiation. In the presence of oxygen, hydrogenperoxide was also produced. The product yields depended also on the concentration of oxygen in the solution. The initial quantum yield of the products and of the ammonia decomposed were determined. Probable reaction mechanisms for the reaction were presented from the products analysis.

Role of Acyl-CoA Synthetase 4, an Arachidonate-Preferring Enzyme Expressed in Steroidogenic Tissues

  • Kang, M.J.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.339-341
    • /
    • 2000
  • In mammals, fatty acid utilization is initiated by activation of fatty acid, catalyzed by acyl-CoA synthetase(ACS, EC6.2.1.3). This enzyme reaction is essential in fatty acid metabolism, since mammalian fatty acid synthetase contains a specific thioesterase to produce fatty acid as th $\varepsilon$ final reaction product. Acyl-CoA, the product of ACS, is utilized in various metabolic pathways including membrane biogenesis, energy production and fat deposition. (omitted)

  • PDF

A Characterization of Pervaporation-facilitated Esterification Reaction with non-perfect Separation (비완전 막분리시 투과증발 막촉진 에스터화 반응 거동 연구)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.268-282
    • /
    • 2003
  • Pervaporation-facilitated esterification with slow reaction regime was characterized by using a practical model based on non-perfect separation through membrane. A non-perfect separation in which the membrane is not perfectly permselective to water was applied to the model. Thus, membrane selectivity and membrane capability to remove water were included in the simulation model to explain how they influence the membrane-facilitated reaction process and improve the reactor performance. It was shown by simulation that in the reaction systems with non-perfect separation, reaction completion can hardly be achievable when any reactant at initial molar ratio=1 or the less abundant reactant at initial molar ratio>1 permeates through membrane, and the permeation of ester accelerates the forward reaction md increase reaction conversion at any instant through removal of product species like water. The volume change causes concentrating both reactants and products that affect the reaction with time in opposite ways; reactant-concentrating effect is dominant during the initial stage of reaction, increasing the reaction rate, and then concentrating product influences more reaction by decreasing the reaction rate.

Fabrication of Reaction Squeeze Cast (${Al_2}{O_3}$+Si)/Mg Hybrid Metal Matrix Composites (반응용탕단조법에 의한 (${Al_2}{O_3}$+Si)/Mg 하이브리드 금속복합재료의 제조)

  • 전상혁;오동현;박익민;조경목;최일동
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.109-115
    • /
    • 2000
  • In the present study, (10%$Al_2O_3$+5%Si)/AZ91 Mg hybrid composite was fabricated using the squeeze casting method. During squeeze casting, molten Mg was infiltrated into the preform of 10%$Al_2O_3$+5%Si and reaction product of $Mg_2Si$ intermetallic compound was formed by the reaction between molten Mg and Si powder. Microstructure has been observed and mechanical properties were evaluated for the reaction squeeze cast (RSC) hybrid composite. It was found that Si powder totally reacted with molten Mg to form $Mg_2Si$. Reinforcement ($Al_2O_3$) and the reaction product ($Mg_2Si$) are fairly uniformly distributed in Mg matrix for the squeeze cast hybrid composite. Mechanical properties were improved with hybridization of reinforcements, namely higher hardness and enhanced wear resistance comparing squeeze cast (15%$Al_2O_3$)/AZ91 Mg composite.

  • PDF

Quasiclassical Trajectory Calculations for the Reaction Ne + H2+ → NeH+ + H

  • Wang, Yuliang;Tian, Baoguo;Qu, Liangsheng;Chen, Juna;Li, Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4210-4214
    • /
    • 2011
  • Quasiclassical trajectory (QCT) calculations of Ne + ${H_2}^+$ reaction have been carried out on the adiabatic potential energy surface of the ground state $1^2$ A'. The reaction probability of the title reaction for J = 0 has been calculated, and the QCT result is consistent with the previous quantum mechanical wave packet result. Quasiclassical trajectory calculations of the four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r$, ${\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. Due to the well in $1^2$ A' PES, the reagent vibrational excitation has greater influence on the polarization of the product rotational angular momentum vectors j' than the collision energy.

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhdrogenolysis Method (II) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성 (II))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.80-84
    • /
    • 1991
  • Lignocellulosic biomass including acetosolv ricestraw and spruce lignin were liquefied and converted into liquid hydrocarbons by catalytic hydroliquefaction reaction. These experimental works were carried out in 1-liter-capacity autoclave using 50% tetralin and m-cresol solution respectively as soluble solvent and Ni. Pd. Fe and red mud as catalyst. $H_2$ gas was supplied into the reactor for escaltion of deoxhydroenolysis reaction. Catalyst concentrations were 1 % of raw material based on weight. The ratio between raw materials and soluble solvent are 1g and 10cc. The reaction conditions are 400-$700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure. The highest yield of hydrocarbon, so called "product oil" showed 32% and 5.5% of lowest char formation when red mud was used as catalyst. The product oil yields from those of other catalysts were in the range of 20-29%. The influence of different initial hydrogen pressures was examined in the range d 30-50 atms. A minimum pressure of 35 atms was necessary to obtain a complete recovery of souble solvent for recycling.

  • PDF

Evaluation of Three Feasible Biodegradation Models for Food Waste

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Food waste is produced from food factories, food services, and home kitchens. The generated mass reached 5.4 million tons/year in 2020. The basic management technology for such waste has been biological degradation under an anaerobic environment. However, the whole process is intrinsically slow and considerably affected by the inner physicochemical properties of the waste and other surrounding conditions, which makes optimization of the process difficult. The most promising options to counter this massive generation of waste are eco-friendly treatments or recycling. As a preliminary step for these options, attempts were made to evaluate the feasibility and usability of three simulative models based on reaction kinetics. Model (A) predicted relative changes over reaction time for reactant, intermediate, and product. Overall, an increased reaction rate produced less intermediate and more product, thereby leading to a shorter total reaction time. Particle diminishing model (B) predicted reduction of the total waste mass. The smaller particles diminished faster along with the dominant effect of microbial reaction. In Model (C), long-chain cellulose was predicted to transform into reducing sugar. At a standard condition, 48% of cellulose molecules having 105 repeating units turned into reducing sugar after 100 h. Also it was found that the optimal enzyme concentration where the highest amount of remnant sugar was harvested was 1 mg L-1.

Reaction Route for Enzymatic Production of Neofructor-oligosaccharides from Sucrose Using Penicillium citrinum Cells

  • Lee, Jae-Heung;Satoru Shinohara
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.331-333
    • /
    • 2001
  • The production of oilgosaccharides using Penicillium citrium cells at high sugar concentrations was investigated at 50$\^{C}$ and pH 5.0. Both 1-kestose and neokestose were produced form sucrose, while both nystose and tetrasaccharide were produced from 1-kestose. However, no reaction product was obatined from neogructo-oligosaccharides such as neokestos. Based on these experimental rsults, a hypothetical reaction route was proposed to illustrate how neofructor-oilgosaccharids are formed from 1-kestose.

  • PDF

Kinetic Studies on the Reaction of the Heterobimetallic Anion, $(OC)_5CrMn(CO)_5{^-}M^+\;(M^+=Na^+,\;PPN^+)$ with Allyl Bromide

  • Park, Yong K.;Kim, Gyu S.;Song, Gwan O.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.310-315
    • /
    • 1995
  • The heterobimetallic anion, (OC)5CrMn(CO)5-M+ (M+=Na+, PPN+), which has a donor-acceptor metal-metal bond1, was reacted with allyl bromide to yield BrCr(CO)5- and Mn(CO)5(CH2CHCH2). The reaction mechanism has been proposed in terms of the consecutive reaction pathway in which Cr(CO)5(THF) is an important intermediate leading to the corresponding product. Counterion effect on this reaction was also evaluated and the results were compared with those of the corresponding reaction of the mononuclear carbonyl anion, Mn(CO)5-.