• Title/Summary/Keyword: reaction phase

Search Result 2,721, Processing Time 0.031 seconds

High Temperature Phase Separation of $H_2SO_4-HI-H_2O-I_2$ System In Iodine-Sulfur Hydrogen Production Process (Iodine-Sulfur 수소 제조 공정에서 $H_2SO_4-HI-H_2O-I_2$ 계의 고온 상 분리)

  • Lee, Dong-Hee;Lee, Kwang-Jin;Kang, Young-Han;Kim, Young-Ho;Park, Chu-Sik;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.395-402
    • /
    • 2006
  • Iodine-sulfur(IS) hydrogenation production process consists of three sections, which are so called a Bunsen reaction section, a HI decomposition section and a $H_2SO_4$ decomposition section as a closed cycle. For highly efficient operation of a Bunsen reaction section, we investigated the phase separation characteristics of $H_2SO_4-HI-H_2O-I_2$ system into two liquid phases($H_2SO_4$-rich phase and $HI_x$-rich phase) in the high temperature ranges, mainly from 353 to 393 K, and in the $H_2SO_4/HI/H_2O/I_2$ molar ratio of $1/2/14{\sim}30/0.3{\sim}13.50$. The desired results for the minimization of impurities in each phase were obtained in conditions with the higher temperature and the higher $I_2$ molar composition. On the basis of the distribution of $H_2O$ to each phase, it is appeared that the affinity between $HI_x$ and $H_2O$ was more superior to that between $H_2SO_4$ and $H_2O$.

Crystallization Vitrification and Phase Separation

  • Kim, Sung-Chul
    • The Korean Journal of Rheology
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 1989
  • Polymer fluid flow and polymerization reaction occur simultaneously during the reactive polymer processing. The viscosity and physical properties change as thereaction proceeds and the crystallization and vitrifica-tion occur as the T,,,and the Tg of the polymerizing fluid exceeds the reaction temperature within the mold.

  • PDF

The Kinetic and EMG Analysis about Supporting Leg of Uke in Judo (유도 허벅다리걸기 기술 발휘 시 지지발에 대한 근전도 및 운동역학적 분석)

  • Park, Jong-Yul;Kim, Tae-Wan;Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.197-205
    • /
    • 2007
  • The purpose of this study is to analyze the muscle activations and Ground Reaction Force(GRF) in university judo players, and provide the guide of training in Judo. Using surface electrode electromyography(EMG), we evaluated muscle activity in 5 university judo players during the Judo Uke Movements. Surface electrodes were used to record the level of muscle activity in the Tibialis Anterior, Rectus Femoris, Elector Spinae, Gluteus Maximus, Gastrocnemius muscles during the Uke. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The Uke was divided into four phases : Kuzushi-1, Kuzushi-2, Tsukuri, Kake. The results can be summarized as follows: 1. The effective Uke Movements needs to short time in the Kake Phase 2. The Analysis of Electromyography of Uke Movements in Supporting Leg; TA(Tibialis anterior) had Higher %RVC in the Kuzushi Phase, RF(Rectus Femoris) had Higher %RVC in the Tsukuri Phase, GM(Gluteus Maximus) had Higher %RVC in the Kake Phase 3. The ground reaction force for Z(vertical) direction was showed increase tendency in Kuzushi phase, Tsukuri phase and decrease tendency in Kake phase.

Effect of Vesicle Curvature on Phospholipase D Reaction-Induced-Rupture

  • Lee, Gil Sun;Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3223-3226
    • /
    • 2013
  • Spherical phospholipid-bilayers, vesicles, were prepared using the layer-by-layer double emulsion technique, which allows the bilayer to be formed asymmetrically. On the outer layer of the vesicles, the phospholipase D (PLD) reacted to convert phosphatidylcholine (PC) to phosphatidic acid (PA). The reaction induced the curvature change of the vesicles, which eventually led to rupture. The response time from the time of PLD injection to the time of rupture was measured against different vesicle curvatures and the outer layer phase, using the fluorescence intensity change of a pH-sensitive dye encapsulated within the vesicles. The effect of the vesicle curvature on the response was observed to be more significantly dramatic at the solid phase, compared to the liquid phase. Furthermore, in the solid phase, the response time was faster for 80 and 155 nm vesicles and, slower for 605 nm vesicles than similarly sized vesicles in the liquid phase vesicles. This difference in the response time was thought to result from the configuration determined by the phase difference and the PLD behavior.

A Study on the Formation of Octanenitrile as a Precursor for Synthesis of Carboxylic Acid (카르복실산 합성전구체(合成前驅體)로서의 옥탄니트릴의 생성반응(生成反應)에 관(關한) 연구(硏究))

  • Kim, Yong-In;Oh, Yang-Hwan;Kim, Kwang-Sik;Lee, Dong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 1989
  • Using the quarternary ammonium salts as phase transfer catalyst, the nucleophilic substitution reaction of 1-chlorooctane with sodium-cyanide was investigate kinetically with respect to the formation of octanenitrile. The product was analyzed with gas chromatograph, and quantity of octanenitrile was measured. The reaction condition was considered by the effect of the reaction temperature, of the species and the amount of catalyst, of the speed of strirring, and of the concentration of reactants. The reaction was carried out in the first order on the concentration of 1-chlorooctane and sodium cyanide, respectively. The over-all order was 2nd. The activation energies for the nucleophilic substitution reaction of 1-chlorooctane and 1-bromooctane under tetrabutylammonium hydrogen-sulfate were calculated as 2.05 and 10.08kcal/mol, respectively. The effect of various caltalysts was decreased in the order of tetrabutylammonium bromide, terabutylammonium, tetrabutylammonium hydrogensulfate, and tetrabutylammonium iodide. The reaction rate was dependent on the concentration of sodium-cyanide dissolved in the aqueous phase, and the good result was shown when the mol ratio between 1-chlorooctane and sodium cyanide was one per three.

Nano-particles of Mechanochemical Synthesis

  • Urakaev, Farit Kh.
    • Journal of the Speleological Society of Korea
    • /
    • no.71
    • /
    • pp.5-11
    • /
    • 2006
  • A theoretical investigation of the solid phase mechanochemical synthesis of nano sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3 mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano TlCl by dilution of initial (2NaCl+$Tl_2SO_4$) mixture with the exchange reaction product (diluent,$zNa_2SO_4$, z=z*=11.25) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano TlCl obtained experimentally were compared with those for the model reaction KBr+TlCl+zKCl=(z+1) KCl+TlBr (z=z1*=13.5), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

Theory of Nanoparticles Mechanosynthesis

  • Urakaev, Farit Kh.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.405-406
    • /
    • 2005
  • A theoretical investigation of the solid-phase mechanochemical synthesis of nano-sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3-mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact-friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano-TlCl by dilution of initial (2NaCl + $Tl_2SO_4$) mixture with the exchange reaction product (diluent, $zNa_2SO_4$, $z=z^*=11.25$) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano-TlCl obtained experimentally were compared with those for the model reaction KBr + TlCl + zKCl = (z + 1) KCl + TlBr ($z=z_l^*=13.5$), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

  • PDF

Properties and pozzolanic reaction degree of tuff in cement-based composite

  • Yu, Lehua;Zhou, Shuangxi;Deng, Wenwu
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • In order to investigate the feasibility and advantage of tuff used as pozzolan in cement-based composite, the representative specimens of tuff were collected, and their chemical compositions, proportion of vitreous phase, mineral species, and rock structure were measured by chemical composition analysis, petrographic analysis, and XRD. Pozzolanic activity strength index of tuff was tested by the ratio of the compression strength of the tuff/cement mortar to that of a control cement mortar. Pozzolanic reaction degree, and the contents of CH and bond water in the tuff/cement paste were determined by selective hydrochloric acid dissolution, and DSC-TG, respectively. The tuffs were demonstrated to be qualified supplementary binding material in cement-based composite according to relevant standards. The tuffs possessed abundant $SiO_2+Al_2O_3$ on chemical composition and plentiful content of amorphous phase on rock texture. The pozzolanic reaction degrees of the tuffs in the tuff/cement pastes were gradually increased with prolongation of curing time. The consistency of CH consumption and pozzolanic reaction degree was revealed. Variation of the pozzolanic reaction degree was enhanced with the bond water content and relationship between them appeared to satisfy an approximating linear law. The fitting linear regression equation can be applied to mutual conversion between pozzolanic reaction degree and bond water content.

Synthesis of Silicon Tracelsss Linker for Solid-Phase Reaction

  • Mun Han-Seo;Seong Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.371-375
    • /
    • 2004
  • The silicon linker is the foremost traceless linker used in solid-phase reactions. Hydrogen fluo-ride (HF) or trifluoroacetic aicd (TFA) can remove the silicon linker with the silicon atom being replaced by a hydrogen atom. In this experiment, the linkers 1c and 2d, which are the most useful in solid-phase reactions, were synthesized, Linker 1c is composed of seven linearly linked carbons and linker 2d includes an oxygen atom in the linear carbon chain to increase the solvation capacity. The carboxylic acid component of linker 1c and 2d forms an amide or ester bond with resin. The synthesized linkers 1c and 2d could be utilized in constructing a chemical compound library that includes indole, benzodiazepine and phenothiazine (aromatic ring compounds).

Fabrication of Cu-Sheathed Bi-Sr-Cu-O High Temperature Superconductor Thick Films (동피복재법을 이용한 Bi-Sr-Ca-Cu-O 고온초전도 후막 제조)

  • 한상철;성태현;한영희;이준성;정상진
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.22-25
    • /
    • 1999
  • A well oriented Bi-2212 superconductor thick films were fabricated by screen printing with a Cu-free Bi-Sr-Ca-Cu-O powder on a copper plate and heat-treating at 820- $880^{\circ}C$for several minute in low oxygen pressure or are. At minute in low oxygen pressure of air. At , the printing layer partially melted by reaction between the Cu-free precursor by reaction between the Cu-free$870^{\circ}C$ precursor and CuO of the oxidizing copper plate. It is believed that the solid phase is Bi : Sr : Ca : Cu = 2 : 2 : 0 : 1. It is likely that the Bi-2212 superconducting phase is formed at Bi-2212 superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows.

  • PDF