• 제목/요약/키워드: reaction order

검색결과 4,360건 처리시간 0.031초

C. I. Disperse Blue 79의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of C. I. Disperse Blue 79)

  • 박건용;박창혁;박병기
    • 한국염색가공학회지
    • /
    • 제13권5호
    • /
    • pp.312-319
    • /
    • 2001
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Blue 79(B-79) which is 4-N, N- diacetoxyethyl -2- acylamino-5-ethos y -2'-bromo-4',6'-dinitroazobenzene were investigated. The color strength of B-79 in acetone/water solutions of various NaOH concentrations decreased continuously. The hydrolysis rate of B-79 increased with increasing alkali concentration and appeared following first order reaction. The observed rate constants for various concentrations of B-79 showed similar values, and B-79 was hydrolyzed by first order reaction for dye concentration. Therefore, it was confirmed that the overall reaction follow second order kinetics and proceed via $S_N2$ reaction. From the study on kinetics and spectrometric analysis, it was proposed that the rate determining step of the hydrolysis reaction of B-79 is the nucleophilic substitution reaction - that is the reaction of the rapid attack of OH- on the carbon atom, which is in acceptor ring, adjacent to auto group to break the C-N bond. And it was also found that the final hydrolysis products of B-79 include both the acceptor ring in the form of sodium salt and the donor ring possessing 4-N,N-dihydroxyethyl group converted from 4-N, N-diacetoxyethyl group.

  • PDF

수산물가공폐수의 혐기.호기 생물학적 반응특성 (Anaerobic/Aerobic Biological Reaction Characteristics of the Marine Products Industry Wastewater)

  • 최용범;김거유;권재혁
    • 한국환경보건학회지
    • /
    • 제34권6호
    • /
    • pp.452-458
    • /
    • 2008
  • This study was undertaken to establish the biological reaction characteristics of the marine products industry wastewater which contains high concentrations of organic matter and saline. As the S/I is varied from 0.3 to 1.2, the results were follows : the observed ultimate anaerobic biodegradability varied from 72.0 to 88.0%, the first order reaction rate varied from 0.1735 to $0.3420\;day^{-1}$ and the second order reaction rate varied from 0.0132 to $0.0295\;day^{-1}$. When S/I was 0.9, the first order reaction rate had a maximum value, but the variations of the second order reaction rate were less than 1st-order reaction rate. When the operation time exceeded 2 days the gas production rapidly increased. The source of this rapid increase was due to that the activity of the granular sludge used in this study being faster than that of conventional sludge. Under aerobic condition, the characteristics of organic matter were as follows: the marine industry wastewater used in this study contained about 81% of biodegradable matter, and it was divided into readily biodegradable COD(Ss), slowly biodegradable COD(Xs), soluble COD(Si) and inert suspended COD (Xi). The percentages of each COD were 87.3%, 23.9%, 6.4% and 12.4% respectively.

유기금속 촉매를 사용한 Succinic Acid과 1,4-butanediol의 에스테르화반응에 관한 연구 (A Study on the Esterification Reaction of Succinic Acid and 1,4-butanediol Using an Organic Metal Catalysts)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.415-421
    • /
    • 2009
  • Esterification reaction between succinic acid[SA] and 1,4-butanediol [BD} was kinetically investigated in the presence of organic metal catalysts (alkyl-silver oxide(ASO),CAT 100E) at $150{\sim}190^{\circ}C$. The reaction rates measured by the amount of distilled water from the reaction vessel. The esterification reaction was carried out under the first order kinetics with respect to the concentration of reactants and catalyst, respectively. The overall reaction order was 2nd. From the examination of relationship between apparent reaction rate constants and reciprocal absolute temperature, the activation energy has been calculate as 146.70 kJ/mol with ASO catalyst and 43.04 kJ/mol with CAT 100E catalyst.

배급수계통에서 잔류염소 감소 특성 및 적용연구 (Modeling and Application of Chlorine Bulk Decay in Drinking Water Distribution System)

  • 안재찬;박창민;구자용
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.487-496
    • /
    • 2005
  • Chlorine bulk decay tests were carried out by bottle test under controlled conditions in a laboratory. Experiments were performed at different temperatures: $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and the water temperatures when samples were taken from the effluent just before entering to its distribution system. 38 bulk tests were performed for water of Al (water treatment plant), 4 bulk tests for A2 (large service reservoir), and A3(pumping station). Residual chlorine concentrations in the amber bottles were measured over time till about 100 hours and bulk decay coefficients were evaluated by assuming first-order, parallel first-order, second-order. and $n^{th}-order$ reaction. The $n^{th}-order$ coefficients were obtained using Fourth-order Runge-Kutta Method. A good-fit by the average coefficient of determination ($R^2$) was first-order ($R^2=0.90$) < parallel first-order ($R^2{_{fast}}=0.92$, $R^2{_{slow}}=0.95$) < second-order ($R^2=0.95$) < $n^{th}-order$ ($R^2=0.99$). But if fast reaction of parallel first-order bulk decay were applied to the effluent of large service reservoir with ca. 20 hours of travel time and slow reaction in the water distribution system following the first 20 hours, parallel first-order bulk decay would be best and easy for application of water quality modeling technique.

카르복실산 합성전구체(合成前驅體)로서의 옥탄니트릴의 생성반응(生成反應)에 관(關한) 연구(硏究) (A Study on the Formation of Octanenitrile as a Precursor for Synthesis of Carboxylic Acid)

  • 김용인;오양환;김광식;이동우
    • 한국응용과학기술학회지
    • /
    • 제6권2호
    • /
    • pp.29-37
    • /
    • 1989
  • Using the quarternary ammonium salts as phase transfer catalyst, the nucleophilic substitution reaction of 1-chlorooctane with sodium-cyanide was investigate kinetically with respect to the formation of octanenitrile. The product was analyzed with gas chromatograph, and quantity of octanenitrile was measured. The reaction condition was considered by the effect of the reaction temperature, of the species and the amount of catalyst, of the speed of strirring, and of the concentration of reactants. The reaction was carried out in the first order on the concentration of 1-chlorooctane and sodium cyanide, respectively. The over-all order was 2nd. The activation energies for the nucleophilic substitution reaction of 1-chlorooctane and 1-bromooctane under tetrabutylammonium hydrogen-sulfate were calculated as 2.05 and 10.08kcal/mol, respectively. The effect of various caltalysts was decreased in the order of tetrabutylammonium bromide, terabutylammonium, tetrabutylammonium hydrogensulfate, and tetrabutylammonium iodide. The reaction rate was dependent on the concentration of sodium-cyanide dissolved in the aqueous phase, and the good result was shown when the mol ratio between 1-chlorooctane and sodium cyanide was one per three.

초음파에 의한 수중의 난분해성 방향족화합물의 반응특성 (Characteristics of the sonolytic reaction of refractory aromatic compounds in aqueous solution by ultrasound)

  • 손종렬;모세영
    • 한국물환경학회지
    • /
    • 제18권4호
    • /
    • pp.411-419
    • /
    • 2002
  • In this study, the series of ultrasonic irradiation for removal of refractory aromatic compounds has been selected as a model reaction in the batch reactor system in order to obtain the reaction kinetics. The products obtained from the ultrasonic irradiation were analysed by GC and GC/MSD. The decomposition of benzene produced toluene, phenol, and C1-C4 compounds, while the intermediates during the ultrasonic irradiation of 2,4-Dichlorophenol(DCP) were phenol, HCl, catechol, hydroquinone, and benzoquinone. It was found that more than 80% of benzene, and 2,4-DCP solutions were removed within 2 hours in all reaction conditions. The reaction order in the degradation of these three compounds was verified as pseudo-zero or first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as $H{\cdot}$ and $OH{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it appeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory compounds which are difficult to be decomposed by the conventional methods.

전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 - (Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment -)

  • 양해영
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.

디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9))

  • 박건용;김재현
    • 한국염색가공학회지
    • /
    • 제19권4호
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

Effect of the Organometallic Catalyst in the Preparation of Polybutylenesuccinate

  • Park, Keun-Ho
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.22-28
    • /
    • 2011
  • Esterification reaction between succinic acid[SA] and 1,4-butanediol [BD] was kinetically investigated in the presence of organometallic catalysts (ESCAT-100Ag18, MBTO) at $150{\sim}180^{\circ}C$. The reaction followed from the measurement of the quantity of water which was distilled from the reaction vessel. The esterification reaction was carried out under the first order kinetics with respect to the concentration of reactants and catalyst, respectively. The overall reaction order was 2nd. From the examination of relationship between apparent reaction rate constants and reciprocal absolute temperature, the activation energy has been calculated as 146.70 kJ/mol(ESCAT-100Ag18) and 87.57 kJ/mol(MBTO), respectively.

디메틸프탈레이트와 에틸렌글리콜의 에스테르 교환반응에서 질산염 촉매의 영향 (The Effect of Nitrate Catalysts in Transesterification Reaction between Dimethyl Phthalate and Ethylene Glycol)

  • 박근호;손병청
    • 한국응용과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.23-29
    • /
    • 1993
  • Transesterification reaction between dimethyl phthalate and ethylene glycol was kinetically investigated in the presense of various metal nitrate catalysts at $170^{\circ}C$. The reaction rates measured by the amount of distilled methanol from the reaction vessel. The transesterification reaction was carried out under the first order conditions respect to the concentration of dimethyl phthalate and catalyst, respectively. The over all order was 2nd. By Arrhenius plot, the activation energy was calculated as 17.4kcal/mole and 17.2kcal/mole on the transesterification reaction with zinc nitrate and lead nitrate, respectively. Apparent rate constant, k' was appeared linear about concentration of catalyst.