• Title/Summary/Keyword: reaction gas

Search Result 2,915, Processing Time 0.033 seconds

Synthesis of Nano-sized Tungsten Carbide Powders by Vapor Phase Reaction of Tungsten Ethoxide (텅스텐 에톡사이드의 기상 반응을 이용한 초미립 WC 분말의 합성)

  • 가미다;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Nano-sized WC powders were synthesized by vapor phase reaction using the precusor of tungsten ethoxide under helium and hydrogen atmosphere. The phases of the powder were varied with reaction Bone and gas flow rate. The powder size was about 30nm in diameter, and the tungsten carbide powder was coated by carbon layer. The synthesis of nano-sized WC powders was promoted as the hydrogen gas flow rate became higher. Inversely, tungsten oxide was formed by increasing the flow rate of helium gas. The synthesized powders were analyzed by XRD, FE-SEM, carbon analyzer etc.

Effect of discontinuous mixture gas feeding on effective hydrogen production in a steam reformer frommethane (효율적 수소 생산을 위한 메탄 수증기 개질 반응기에서의 불연속적 가스 유입의 영향)

  • Lee, Shin-Ku;Park, Joon-Guen;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.25-28
    • /
    • 2008
  • Steam reforming reaction is a matured technology to get hydrogen from hydrocarbon fuels compared with other reforming reactions such as partial oxidation(POX), autothermal reforming(ATR). It is so endothermic that it needs heat source to activate the reaction. Due to the reaction characteristics, heat transfer limitation phenomena generally occur in the steam reformer. As one of new ideas, the effect of discontinuous gas feeding is investigated based on heat transfer characteristics. The new operating method is usually favorable at high GHSV region(i.e. over $10,000h^{-1}$). In order to numerically simulate the physical issues, numerical approach is adopted based on heterogeneous reaction model, two-equation model in energy equation, and other constitutive models in porous media.

  • PDF

Gas Phase Analysis of the Diamond CVD Reaction by Hot Filament Method (열필라멘트법에 의한 다이아몬드 CVD반응의 기상 조성 분석)

  • 서문규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1233-1239
    • /
    • 1998
  • Gas phase compositions of the hot filament-assisted diamond CVD reaction were analyzed by on-line quadrupole mass analysis(QMA) technique. D2 isotope experiments showed that methance molecules were decomposed into atomic state and then recombined in to acetylene during transport the probe line. Although acetylene or ethylene was supplied instead of methane similar gas compositions were obtained when filament temperature was above 1500$^{\circ}C$ Therefore this system could be assumed near thermal equilibrium state. Filament temperature and reaction pressure variation experiments exhibited the same tendency between acetylene concentration and diamond growth rate and these results implied that acetylene molecule played the role of the reactive species in the diamond CVD reaction.

  • PDF

The Effect of H2 Flow Rate and TMS Concentration on Synthesizing Ultrafine $\beta$-SiC Powder by Vapor Phase Reaction (기상반응에 의한 $\beta$-SiC 초미분말 합성시 수소 가스유량과 TMS 농도의 영향)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.853-858
    • /
    • 1999
  • To investigate the effect of H2 flow rate and TMS[Si(CH3)4] concentration on synthesizing ultrafine ${\beta}$-SiC powder by vapor phase reaction the experiment was performed at 1100$^{\circ}C$ of the reaction temperature under the condition of 200-2000 cc/min of H2 gas flow rate and 1-10% of TMS concentration respectively. The shape of ${\beta}$-SiC particles synthesized was spherical and the size of particles decreased and the distribution of particles was more uniform with increasing H2 gas flow rate. In this case Si powders were coexisted with ${\beta}$-SiC Pure and ultrafine ${\beta}$-SiC powders without Si were obtained under the condition of above 2% of TMS concentration and below 1500 cc/min of H2 gas flow rate.

  • PDF

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Fabrication of Micro Carbon Structures and Patterns with Laser-assisted Chemical Vapor Deposition (레이저 국소증착을 통한 미세 탄소구조물 및 패턴 제조)

  • 정성호;김진범;이선규;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.914-917
    • /
    • 2002
  • Fabrication of micro carbon structures and patterns using laser-assisted chemical vapor deposition is studied. Argon ion laser and ethylene were used to grow micro carbon rod through pyrolytic decomposition of the reaction gas. The influence of reaction gas pressure and incident laser power on the diameter and growth rate of the micro carbon rod was experimentally investigated. The diameter of micro carbon rods increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below 1W. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 28 ${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated.

  • PDF

A study of turbulent premixed flame structure in a plane shear layer (평면전단층의 난류예혼합 화염의 구조에 관한 실험적 연구)

  • 이재득;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 1989
  • A turbulent premixed flames of layer formed between burned hot gas and unburned mixture were investigated by means of schlieren photograph with fluctuations of temperature and ion current. The combustion intensity between burned hot gas and shear layer was higher than the intensity between unburned mixture and shear layer. A wrinkled laminar flame and flamelet were appeared at downstream to exist and distributed reaction zone was at upstream as a result of analyzed probability density functions of temperature fluctuation. The initial combustion intensity of reaction zone of eddy between burned hot gas and shear layer was higher than that of final, flowing downstream, and vice versa between unburned mixture and shear layer.

  • PDF

The Microstructure of the Reaction -Bonded $Si_3N_4$ Formed in the Various Atmosphere (질화분위기에 따른 반응결합 질화규소의 미세구조변화)

  • 박지연;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.61-66
    • /
    • 1986
  • The gas mixtures ($H_2$/$N_2$, He/$N_2$) having a high thermal conductivity allow the heat generated by the nitriding exotherm to be dissipated from the compact in to the nitriding atmosphere permitting a more accurate control of temperature and produces a more uniform microstructure. In order to observe the effect of the mixed gas atmosphere on the microsturcture of RBSN. the specimen was nitrided in the mixed gas atmosphere which was containe up to 50vol% $H_2$ or He for 0-12 hrs at 135$0^{\circ}C$. The addition of hydrogen to nitrogen gas resulted in the growth of a-needle at the early stage of nitrding increase of the reaction rate and a finer and more uniform microstructure. in case of the addition of helium the behaviour of reaction was similar to the one with pure nitrogen. As the amount of helium was increased a coarse microstructure was formed.

  • PDF

Formation of Ti-B-N-C Ceramic Composite Materials via a Gas-Solid Phase Reaction

  • Yoon, Su-Jong
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Phase mixtures of Titanium boride, nitride, and carbide powder were produced by the reduction of a mixture of titanium and boron oxides with carbon via a gas-solid phase reaction. Boron oxides produce a vapour phase or decompose to a metal sub-oxide gaseous species when reduced at elevated temperature. The mechanism of BO sub-oxide gas formation from $B_2O_3$ and its subsequent reduction to titanium diboride for the production of uniform size hexagonal platelets is explained. These gaseous phases are critical for the formation of boride, nitride and carbide ceramics. For the production of ceramic phase composite microstructures, the nitrogen partial pressure was the most critical factor. Some calculated equilibrium phase fields has been verified experimentally. The theoretical approach therefore identifies conditions for the formation of phase mixtures. The thermodynamic and kinetic factors that govern the phase constituents are also discussed.

Numerical study on operating parameters of autothermal reformer for hydrogen production (수소생산을 위한 자열개질기 작동조건의 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.507-510
    • /
    • 2008
  • Characteristics of an autothermal reformer at various operating parameters have been studied in this paper. Numerical method has been used, and simulation model has been developed for the analysis. Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction are assumed as dominant chemical reactions in the autothermal reformer. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Veolcity(GHSV). SR reaction rate decreases with low inlet temperature. If OCR is increased, $H_2$ yield is increased but optimal point is suggested. WGS reaction is activated with high SCR. When GHSV is increased, reforming efficiency is increased but pressure drop may decrease the system efficiency.

  • PDF