• Title/Summary/Keyword: reaction gas

Search Result 2,909, Processing Time 0.032 seconds

Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction (전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측)

  • Cho H. M.;Lee K. W.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

Mo Powders Fabricated from MoO3 by Reduction in Hydrogen Gas

  • Hong, Seonghoon;Lee, Changsup;Oh, Changsup;Kil, Sangcheol;Kim, Yongha
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.445-448
    • /
    • 2012
  • We studied the effect of temperature and reaction time by investigating the various temperatures and reaction times in the reduction of molybdenum oxide ($MoO_3$) to molybdenum (Mo) powder in hydrogen gas. We also studied the effect of the reaction of reduction according to the various hydrogen gas flow rates. We surveyed the reduction from molybdenum oxide to molybdenum powder in hydrogen gas and checked two temperature ranges, one from $400^{\circ}C$ to $600^{\circ}C$ and the other from $700^{\circ}C$ to $900^{\circ}C$. We found that the reaction ratio of molybdenum oxide increased with an increasing temperature and also increased with an increasing reaction time, but hydrogen gas did not influence the reduction ratio of molybdenum oxide. We examined molybdenum powders fabricated by ball milling for two hours, using with X-ray diffraction (XRD) and a scanning electron microscopy (SEM).

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

Effect on the Heat of Reaction to Temperature and Absorption Capacity in the Reaction of Cyclic Amines with Carbon Dioxide (고리형 아민과 이산화탄소의 반응에서 온도와 흡수능이 반응열에 미치는 영향)

  • CHOI, JEONG HO;JANG, JONG TACK;YUN, SOUNG HEE;JO, WON HEE;JUNG, JIN YOUNG;YOON, YEO IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.530-537
    • /
    • 2018
  • The effect of temperature and absorption capacity on heat of reaction, which is one of the characteristic studies of $CO_2$ absorption, were investigated in a differential reaction calorimeter (DRC) by using piperazine (PZ) and 2-methylpiperazine (2-MPZ). For all absorbents, $CO_2$ loading capacity decreased with increasing the temperature, while the heat of reaction increased, it figured out that these had a linear correlation between $CO_2$ loading capacity and/or heat of reaction and the temperature. The heat of reaction of all absorbents increased with increasing $CO_2$ loading capacity, especially 2-MPZ rapidly increased at $70^{\circ}C$. The reason for increase in the heat of reaction was occurred the regeneration of $CO_2$, which is a reverse-reaction, simultaneously with the absorption.

The Experimental Study on the Direct Synthesis of DME (Dimethyl Ether) in the Fixed Bed Reactor. (고정층 반응기에서 DME 직접합성에 관한 실험 연구)

  • Choi, Chang Woo;Cho, Wonihl;Ju, Woo-Sung;Lee, Seung-Ho;Baek, YoungSoon;Row, Kyung Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.283-290
    • /
    • 2004
  • The single-step process for conversion of syngas to DME give higher conversion than the syngas-to-methanol process. This arises because of a synergy among the three simultaneous reaction, methanol synthesis, methanol dehydration and water gas shift reaction, in the process. we would find the optimal condition of the process which these advantages. The optimal condition of DME synthesis reaction over a commercial $Cu/Zn/Al_2O_3$ catalyst and Hybrid catalyst in a fixed bed reactor. The syngas-to-dimethyl ether conversion was examined on various reaction condition (Temperature 473~553K, $H_2/CO$ ratio 1~3, Pressure 30'50atm, GHSV 1000~4000).

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Study on Kinetics and Syngas Production of Sewage Sludge Gasification (하수슬러지 가스화의 kinetics 및 합성가스 생산 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.3-8
    • /
    • 2015
  • Gasification characteristics and gas produced from a sewage sludge char were analyzed by using a thermobalance reactor, which is used for a reaction kinetic analysis by measuring weight change of materials at a desired temperature. Gasification reaction rate increased with increasing temperature and steam partial pressure due to the promotion of gasification reaction. Three models of gas-solid reaction were applied to the reaction kinetics analysis and modified volumetric reaction model was an appropriated model for the steam gasification of the sewage sludge char. Apparent activation energy and pre-exponential factors were evaluated as 155.5 kJ/mol and $14,087s^{-1}atm^{-1}$, respectively. The order of reaction on steam partial pressure was 0.68. Gas analysis was performed at $900^{\circ}C$ and hydrogen concentration was highest in the gas concentrations, which increased with increasing the steam partial pressure. Hydrogen concentration increased the most and hydrogen concentration in the produced gas was 2-4 times higher than that of carbon monoxide due to the gasification and water gas shift reaction.

Dynamics of Gas-phase Hydrogen Atom Reaction with Chemisorbed Hydrogen Atoms on a Silicon Surface

  • 임선희;이종백;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1136-1144
    • /
    • 1999
  • The collision-induced reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon (001)-(2×1) surface is studied by use of the classical trajectory approach. The model is based on reaction zone atoms interacting with a finite number of primary system silicon atoms, which then are coupled to the heat bath, i.e., the bulk solid phase. The potential energy of the Hads‥Hgas interaction is the primary driver of the reaction, and in all reactive collisions, there is an efficient flow of energy from this interaction to the Hads-Si bond. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability shows the maximum near 700K as the gas temperature increases, but it is nearly independent of the surface temperature up to 700 K. Over the surface temperature range of 0-700 K and gas temperature range of 300 to 2500 K, the reaction probability lies at about 0.1. The reaction energy available for the product states is small, and most of this energy is carried away by the desorbing H2 in its translational and vibrational motions. The Langevin equation is used to consider energy exchange between the reaction zone and the bulk solid phase.

Reaction of Gas-Phase Bromine Atom with Chemisorbed Hydrogen Atoms on a Silicon(100)-(2${\times}$1) Surface

  • Lee, Jong Baek;Jang, Gyeong Sun;Mun, Gyeong Hwan;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.889-896
    • /
    • 2001
  • The reaction of gas-phase atomic bromine with highly covered chemisorbed hydrogen atoms on a silicon surface is studied by use of the classical trajectory approach. It is found that the major reaction is the formation of HBr(g), and it proceeds th rough two modes, that is, direct Eley-Rideal and hot-atom mechanism. The HBr formation reaction takes place on a picosecond time scale with most of the reaction exothermicity depositing in the product vibration and translation. The adsorption of Br(g) on the surface is the second most efficient reaction pathway. The total reaction cross sections are $2.53{\AA}2$ for the HBr formation and $2.32{\AA}2$ for the adsorption of Br(g) at gas temperature 1500 K and surface temperature 300 K.