• Title/Summary/Keyword: reaction factors

Search Result 1,619, Processing Time 0.028 seconds

A Novel Method to Study the Effects of Cyclosporine on Gingival Overgrowth in Children (소아에서 치은 과증식에 대한 cyclosporine의 효과를 연구하는 새로운 방법)

  • Han, Keumah;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.3
    • /
    • pp.271-279
    • /
    • 2018
  • Previous studies to elucidate the etiology of cyclosporine(Cs)-induced gingival overgrowth in children have not completely excluded all factors that may cause differences among individuals. This study examined the effect of cyclosporine on the metabolism of type 1 collagen(CoL-I) in experimental models that controlled the effects of biological variations on individuals. Five 5-week-old male Sprague-Dawley rats were administered Cs by gastric feeding for 6 weeks. Gingival specimens were harvested from the mandibular posterior area before beginning Cs administration and at 2, 4, and 6 weeks thereafter. Gingival fibroblasts were cultured from all the 20 biopsies collected from the gingiva. Half of the fibroblasts collected prior to the Cs administration were designated as Control. The other half of the fibroblasts were treated with Cs in vitro and called in vitro test group(Tt). The fibroblasts collected 2, 4, and 6 weeks after the Cs administration were called in vivo test groups : T2, T4, T6, respectively. Immunofluorescence microscopy was used to detect CoL-I in all the fibroblasts. CoL-I was analyzed at both the gene and protein expression levels by real-time polymerase chain reaction and western blotting. Changes in CoL-I before and after Cs treatment were evaluated from the gingiva of each rat. There was no significant difference in gene expression of CoL-I in the control and test groups. CoL-I protein expression levels of fibroblasts increased in in vitro Cs treatment for each individual, and also increased in in vivo Cs treatment. In this study, the experimental method that control biological variations that can occur due to differences among individuals was useful. Subsequent studies on other factors besides CoL-I and in-depth studies in humans are needed.

Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate (Single-cathode와 Dual-cathode 미생물연료전지의 탄소원과 질산성질소의 전류발생 특성)

  • Jang, Jae-Kyung;Lee, Eun-Young;Ryou, Young-Sun;Lee, Sung-Hyoun;Hwang, Ji-Hwan;Lee, Hyung-Mo;Kim, Jong-Goo;Kang, Youn-Koo;Kim, Young-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.382-386
    • /
    • 2011
  • Microbial fuel cells (MFC), devices that use bacteria as a catalyst to generate electricity, can utilize a variety of organic wastes as electron donors. The current generated may differ depending on the organic matter concentrations used, when other conditions, such as oxidant supply, proton transfer, internal resistance and so on, are not limiting factors. In these studies, a single-cathode type MFC (SCMFC) and dual-cathode type MFC (DCMFC) were used to ascertain the current's improvement through an increase in the contact area between the anode and the cathode compartments, because the cathode reaction is one of the most serious limiting factors in an MFC. Also an MFC was conducted to explore whether an improvement in electricity generation resulted from oxidizing the carbon sources and nitrates. About 250 mg $L^{-1}$ sodium acetate was fed to an anode compartment with a flow rate of 0.326 mL $min^{-1}$ by continuous mode. The current generated from the DCMFC was higher than the value produced from MFC with a single cathode. COD removal of dual-cathode MFC was also higher than that of single-cathode MFC. The nitrate didn't affect current generation at 2 mM, but when 4 and 8 mM nitrate was supplied, the current in the single-cathode and dual-cathode MFC was decreased by 98% from $5.97{\pm}0.13$ to $0.23{\pm}0.03$ mA and $8.40{\pm}0.23$ to $0.20{\pm}0.01$ mA, respectively. These results demonstrate that increasing of contact area of the anode and cathode can raise current generation by an improvement in the cathode reaction.

Studies on the Enzyme from Arthrobacter luteus Accelerating the Lysis of Yeast Cell Walls - I. Effects of Various Factors on the Lysis of Yeast Cell Walls by the Preparation of Crude Zymolyase (Arthrobacter luteus가 생산(生産)하는 효모(酵母) 세포벽(細胞壁) 용해(溶解) 촉진(促進) 효소(酵素)에 관(關)한 연구(硏究) - 제(第) 1 보(報) : Zymolyase 조(粗) 효소(酵素)에 의한 효모(酵母) 세포벽(細胞壁) 용해(溶解)에 미치는 제(諸) 인자(因子)의 영향(影響) -)

  • Oh, Hong-Rock;Shimoda, Tadahisa;Funatsu, Masaru
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.242-248
    • /
    • 1979
  • To detect proper lytic assay conditions of the crude zumolyase from Arthrobacter luteus, effets of the various factors involved in the lytic system of Sacchromyces sake cultured with shaking in the malt extracts medium were investigated. The results are summarized as follows : 1. The susceptibilities of viable cells of S. sake from logarithmic growth phase to the lytic enzmye were much greater than those of the cells in lag and stationary phases. The cells cultured for 18 hr were the most susceptible to the enzyme. 2. Lytic activity of the enzyme toward the viable cells of S. sake was very low. It was, however, enhanced 4 folds of more by the pretreatment of the cells with 0.05 M sodium sulfite. 3. Lytic activity of the enzyme toward commercial baker's yeast cells was negligible, and the effect of sodium sulfite on the lysis of the cells also was nothing but a little. 4. The lyophilized cells of the baker's yeast showed more susceptibility to the lytic enzyme than viable cells of the yeast. No definite effect of sodium sulfite on the lysis of the lyophilized cells, however, was observed either baker's yeast of S. sake. 5. It appeared that the relationship between the reaction rate and the enzyme concentration on the lysis of the yeast cell walls followed enzyme kinetic theory, but one between the reaction rate and concentration of the yeast cells as substrates showed different pattern from that in enzyme kinetic theory. 6. After the preparation of crude zymolyase was kept at $7^[\circ}C$ for 10 days in the 0.05 M phosphate buffer, pH 7.5, the remainning lytic activity was about 80 %.

  • PDF

Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge (어드밴스드 패키징 공정에서 발생할 수 있는 슬러지의 인자 확인 및 형성 방지법의 제안)

  • Jiwon Kim;Suk Jekal;Ha-Yeong Kim;Min Sang Kim;Dong Hyun Kim;Chan-Gyo Kim;Yeon-Ryong Chu;Neunghi Lee;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • In this study, the sludge formation in the wastewater drain from the advanced packaging process mechanisms are revealed as well as the key factors, materials, and sludge prevention methods using surfactant. Compared with that of conventional packaging process, advanced packaging process employ similar process to the semiconductor fabrication process, and thus many processes may generate wastewater. In specific, a large amount of wastewater may generate during the carrier wafer bonding, photo, development, and carrier wafer debonding processes. In order to identify the key factors for the formation of sludge during the advanced packaging process, six types of chemicals including bonding glue, HMDS, photoresist (PR), PR developer, debonding cleaner, and water are utilized and mixing evaluation is assessed. As a result, it is confirmed that the black solid sludge is formed, which is originated by the sludge seed formation by hydrolysis/dehydration reaction of HMDS and sludge growth via hydrophobic-hydrophobic binding with sludge seed and PR. For the sludge prevention investigation, three surfactants of CTAB, PEG, and shampoo are mixed with the key materials of sludge, and it is confirmed that the sludge formations are successfully suppressed. The underlying mechanism behind the sludge formation is that the carbon tails of the surfactant bind to PR with hydrophobic-hydrophobic interaction and inhibit the reaction with HMDS-based slurry seeds to prevent the sludge formation. In this regard, it is expected that various problems like clogging in drains and pipes during the advanced packaging process may effectively solve by the injection of surfactants into the drains.

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas (핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석)

  • Jung, Woo-Chan;Jung, Pil-Kap;Kim, Joung-Won;Moon, Hung-Man;Chang, Min-Ho;Yun, Sei-Hun;Woo, In-Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.169-175
    • /
    • 2018
  • This study deals with a process for the recovery of hydrogen isotopes from methane ($CQ_4$) and water ($Q_2O$) containing tritium in the nuclear fusion exhaust gas (Q is Hydrogen, Deuterium, Tritium). Steam Methane Reforming and Water Gas Shift reactions are used to convert $CQ_4$ and $Q_2O$ to $Q_2$ and the produced $Q_2$ is recovered by the subsequent Pd membrane. In this study, one circulation loop consisting of catalytic reactor, Pd membrane, and circulation pump was applied to recover H components from $CH_4$ and $H_2O$, one of $CQ_4$ and $Q_2O$. The conversion of $CH_4$ and $H_2O$ was measured by varying the catalytic reaction temperature and the circulating flow rate. $CH_4$ conversion was 99% or more at the catalytic reaction temperature of $650^{\circ}C$ and the circulating flow rate of 2.0 L/min. $H_2O$ conversion was 96% or more at the catalytic reaction temperature of $375^{\circ}C$ and the circulating flow rate of 1.8 L/min. In addition, the amount of $CQ_4$ generated by Korean Demonstration Fusion Power Plant (K-DEMO) in the future was predicted. Then, the treatment process for the $CQ_4$ was proposed and HAZOP (hazard and operability) analysis was conducted to identify the risk factors and operation problems of the process.

The effects of the mulberry and silkworm intake on androgen receptor mRNA and myogenic regulatory factors expression of rats muscle for resistance exercise (오디와 누에 섭취가 rats의 저항성 운동에 따른 androgen receptor mRNA와 myogenic regulatory factors의 발현에 미치는 영향)

  • Yang, Sung Jun;Kim, Chang Yong;Lee, Jo Byoung;Kang, Sung Sun;Lee, Jong Jin
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • The purpose of this study is to investigate the effects of supplementation of mulberry powder, mulberry extract and silkworm powder during the 8 weeks of resistance exercise on Androgen receptor(AR) mRNA and Myogenic regulatory factors(MRFs) expression of rats muscle. Fifty males, Sprague-Dawley rat, were randomly divided into 5 groups: CON(control group, n = 10), REG(resistance exercise group, n = 10), MP REG(mulberry powder intake and resistance exercise group, n = 10), ME REG(mulberry extract intake and resistance exercise group, n = 10) and SP REG(silkworm powder intake and resistance exercise group, n = 10). After climbing the ladder without weights during the 1 week of adaptation period, the rats in the resistance exercise group were trained to climb a 0.98-m vertical(80 degree incline) ladder with weights in their tail during 7 weeks(10 times each day, 2 days per week). After exercise, the skeletal muscle was extracted from the flexor hallucis longus. After separating the total ribonucleic acid (RNA) of each group, quantitative polymerase chain reaction was used to analyze RNA quantitatively. AR mRNA and MRFs expression revealed that all of the treated groups had significantly difference. AR mRNA expression increased in ME REG $6.24{\pm}1.85$ and SP REG $9.68{\pm}0.28$ fold compared to CON. Myod mRNA expression increased in MP REG $6.04{\pm}0.47$, ME REG $4.31{\pm}1.58$ and SP REG $8.11{\pm}0.57$ fold compared to CON. And myogenin mRNA expression increased in MP REG $4.11{\pm}0.42$, ME REG $4.12{\pm}0.45$ and SP REG $6.50{\pm}0.61$ fold compared to CON. In conclusion, during the resistance exercise, providing mulberry and silkworm gives positive effect on AR mRNA and MRFs expression increase.

Activation of the NF-$\kappa$B p50/p65 Complex in Human Lung Cancer Cell Lines (인체 폐암세포주에서 NF-$\kappa$B p50/p65 Complex의 활성화)

  • Choi, Hyung-Seok;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.185-194
    • /
    • 1999
  • Background: NF-$\kappa$B is a characteristic transcriptional factor whose functional activity is determined by post-translational modification of protein and subsequent change of subcellular localization. The involvement of the NF-$\kappa$B family of the transcription factors in the control of such vital cellular functions as immune response, acute phase reaction, replication of certain viruses and development and differentiation of cells has been clearly documented in many previous studies. Several recent observations have suggested that the NF-$\kappa$B might also be involved in the carcinogenesis of some hematological and solid tumors. Investigating the possibility that members of the NF-$\kappa$B family participate in the molecular control of malignant cell transformation could provide invaluable information on both molecular pathogenesis and cancer-related gene therapy. Method: To determine the expression patterns and functional roles of NF-$\kappa$B family transcription factors in human lung cancer cell lines NCI-H792, NCI-H709, NCI-H226 and NCI-H157 were analysed by western blot, using their respective antibodies. The nuclear and the cytoplasmic fraction of protein extract of these cell lines were subsequently obtained and NF-$\kappa$B expression in each fraction was again determined by western blot analysis. The type of NF-$\kappa$B complex present in the cells was determined by immunoprecipitation. To detect the binding ability of cell-line nuclear extracts to the KB consensus oligonucleotide, electrophoretic mobility shift assay(EMSA) was performed. Results: In the cultured human lung cancer cell lines tested, transcription factors of the NF-$\kappa$B family, namely the p50 and p65 subunit were expressed and localized in the nuclear fraction of the cellular extract by western blot analysis and immunocytochemistry. Immunoprecipitation assay showed that in the cell, the p50 and p65 subunits made NF-$\kappa$B complex. Finally it was shown by Electrophoretic Mobility Shift Assay(EMSA) that nuclear extracts of lung cancer cell lines are able to bind to NF-$\kappa$B consensus DNA sequences. Conclusion: These data suggest that in human lung cancer cell lines the NF-$\kappa$B p50/p65 complex might be activated. and strengthen the hypothesis that NF-$\kappa$B family transcription factors might be involved in the carcinogenesis of human lung cancer.

  • PDF

A Study on the Visual Preference of Users according to the Location of Benches at Urban Community Parks (도시공원에서 벤치의 배치장소에 따른 이용자의 시각적 선호도에 관한 연구)

  • 유상완;문석기;권상준
    • Archives of design research
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • The purpose of this study is to find out what is the preference of users according to the location of benches at urban community parks. This location of benches is seperated into 4 patterns according to arranging pattern of water space, a walk, pergola and shelter, greenspace. To investigate the visual preference is examined by analyzing visual volume of 4 patterns. Results are as follows; 1. Factor analysis by the total data showed that 5 factors explain 60.40 percent of total variance of the location of bench visual character. They were classified by the sensitive factor, visual factor, physical-individual factor, distinct factor, density factor. Among 5 factors, the sensitive factor which represented psychological reaction was appreciated to be highest. 2. Most of 20 items showed the following scores of mean values in sementic differential experiment : Spot 1->Spot 4-> 2-> 3. The mean values between arrangement place locational differences showed significantly, that could explain to be a violent contrast between the natural factors(weater space, green space, etc) and the artificial factors (around of pergola, shelter, etc)

  • PDF

Increased Protein of the Secretory Leukocyte Pretense Inhibitor (SLPI) and the Expression of Growth Factors in NIH3T3 Cells by LPS Stimulation (NIH3T3 세포주에서 LPS자극에 의한 분비백혈구단백분해효소억제제 (SLPI)의 단백질증가와 성장인자들의 발현)

  • Lee, Sang-Hwa;Choi, Baik-Dong;Jeong, Soon-Jeong;Jang, Hyun-Seon;Kim, Byung-Ock;Lim, Do-Seon;Park, Joo-Cheol;Wang, Guan-Lin;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.36 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • Secretory leukocyte protease inhibitor (SLPI) involves tissue protection against the destructive action of neutrophil elastase at the site of inflammation. Several studies on new functions of SLPI have demonstrated that SLPI may play a primary role in innate immunity than protease inhibitor, To identify the function of SLPI by lipopolysaccharide (LPS) stimulation in the embryonic fibroblast (NIH3T3) cells. we studied the expression of SLPI compared to other growth factors involving the LPS treatment. To address this, we performed the reverse transcriptase polymerase chain reaction (RT-PCR) and Western blots for the detection of mRNA and protein expression of the SLPI and some growth factors such as VEGF. bFGF, and PDGF-BB after LPS stimulation. NIH3T3 cells were exposed 100 ng/mL Escherichia coli LPS for 30min, 60min, 90min, 24h, and 48h, respectively. The result of RT-PCR showed that SLPI and VEGF mRNA was expressed strongly in NIH3T3 without related to LPS stimulation. mRNA of bFGF was weakly expressed such as the expression of the control. PDGF mRNA expression gradually increased follows at time course. However, SLPI protein level was increased in lysates and culture medium by LPS stimulation. Phase contrast microscopic and scanning electron microscopic observation showed that the increased cell number and cytoplasmic enlargement of the NIH3T3 cells. Therefore, it suggests that the LPS upregulates SLPI expression in NIH3T3 cells. Moreover, secreted SLPI may stimulate cell proliferation and migration.