• 제목/요약/키워드: reaction factors

검색결과 1,619건 처리시간 0.025초

식품 내 콜레스테롤 산화 생성물(COPs)의 생성 및 억제; 개요 (Formation and Inhibition of Cholesterol Oxidation Products (COPs) in Foods; An Overview )

  • 김주신
    • 한국응용과학기술학회지
    • /
    • 제40권5호
    • /
    • pp.1163-1175
    • /
    • 2023
  • Cholesterol is prone to oxidation, which results in the formation of cholesterol oxidation products (COPs). This occurs because it is a monounsaturated lipid with a double bond on C-5 position. Cholesterol in foods is mostly non-enzymatically oxidized by reactive oxygen species (ROS)-mediated auto-oxidative reaction. The COPs are found in many common foods of animal-origin and are formed during their manufacture process. The formation of COPs is mainly related to the temperature and the heating time the food is processed, storage condition, light exposure and level of activator present such as free radical. The level of COPs in processed foods could reach up to 1-10 % of the total cholesterol depending on the foods. The most predominant COPs in foods including meat, eggs, dairy products as well as other foods of animal origin were 7-ketocholesterol, 7 α-hydroxycholesterol (7α-OH), 7β-hydroxycholesterol (7β-OH), 5,6α-epoxycholesterol (5,6α-EP), 5,6β-epoxycholesterol (5,6β-EP), 25-hydoxycholesterol (25-OH), 20-hydroxycholesterol (20-OH) and cholestanetriol (triol). They are mainly formed non-enzymatically by cholesterol autoxidation. The COPs are known to be potentially more hazardous to human health than pure cholesterol. The procedure to block cholesterol oxidation in foods should be similar to that of lipid oxidation inhibition since both cholesterol and lipid oxidation go through the same free radical mechanism. The formation of COPs in foods can be stopped by decreasing heating time and temperature, controlling storage condition as well as adding antioxidants into food products. This review aims to present, discuss and respond to articles and studies published on the topics of the formation and inhibition of COPs in foods and key factors that might affect cholesterol oxidation. This review may be used as a basic guide to control the formation of COPs in the food industry.

NANOG expression in parthenogenetic porcine blastocysts is required for intact lineage specification and pluripotency

  • Mingyun Lee;Jong-Nam Oh;Gyung Cheol Choe;Kwang-Hwan Choi;Dong-Kyung Lee;Seung-Hun Kim;Jinsol Jeong;Yelim Ahn;Chang-Kyu Lee
    • Animal Bioscience
    • /
    • 제36권12호
    • /
    • pp.1905-1917
    • /
    • 2023
  • Objective: Nanog homeobox (NANOG) is a core transcription factor that contributes to pluripotency along with octamer binding transcription factor-4 (OCT4) and sex determining region-Y box-2 (SOX2). It is an epiblast lineage marker in mammalian pre-implantation embryos and exhibits a species-specific expression pattern. Therefore, it is important to understand the lineage of NANOG, the trophectoderm, and the primitive endoderm in the pig embryo. Methods: A loss- and gain-of-function analysis was done to determine the role of NANOG in lineage specification in parthenogenetic porcine blastocysts. We analyzed the relationship between NANOG and pluripotent core transcription factors and other lineage makers. Results: In NANOG-null late blastocysts, OCT4-, SOX2-, and SOX17-positive cells were decreased, whereas GATA binding protein 6 (GATA6)-positive cells were increased. Quantitative real-time polymerase chain reaction revealed that the expression of SOX2 was decreased in NANOG-null blastocysts, whereas that of primitive endoderm makers, except SOX17, was increased. In NANOG-overexpressing blastocysts, caudal type homeobox 2 (CDX2-), SOX17-, and GATA6-positive cells were decreased. The results indicated that the expression of primitive endoderm markers and trophectoderm-related genes was decreased. Conclusion: Taken together, the results demonstrate that NANOG is involved in the epiblast and primitive endoderm differentiation and is essential for maintaining pluripotency within the epiblast.

Raw Inonotus obliquus polysaccharide counteracts Alzheimer's disease in a transgenic mouse model by activating the ubiquitin-proteosome system

  • Shumin Wang;Kaiye Dong;Ji Zhang;Chaochao Chen;Hongyan Shuai;Xin Yu
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1128-1142
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Inonotus obliquus has been used as antidiabetic herb around the world, especially in the Russian and Scandinavian countries. Diabetes is widely believed to be a key factor in Alzheimer's disease (AD), which is widely considered to be type III diabetes. To investigate whether I. obliquus can also ameliorate AD, it would be interesting to identify new clues for AD treatment. We tested the anti-AD effects of raw Inonotus obliquus polysaccharide (IOP) in a mouse model of AD (3×Tg-AD transgenic mice). MATERIALS/METHODS: SPF-grade 3×Tg-AD mice were randomly divided into three groups (Control, Metformin, and raw IOP groups, n = 5 per group). β-Amyloid deposition in the brain was analyzed using immunohistochemistry for AD characterization. Gene and protein expression of pertinent factors of the ubiquitin-proteasome system (UPS) was determined using real-time quantitative polymerase chain reaction and Western blotting. RESULTS: Raw IOP significantly reduced the accumulation of amyloid aggregates and facilitated UPS activity, resulting in a significant reduction in AD-related symptoms in an AD mouse model. The presence of raw IOP significantly enhanced the expression of ubiquitin, E1, and Parkin (E3) at both the mRNA and protein levels in the mouse hippocampus. The mRNA level of ubiquitin carboxyl-terminal hydrolase isozyme L1, a key factor involved in UPS activation, also increased by approximately 50%. CONCLUSIONS: Raw IOP could contribute to AD amelioration via the UPS pathway, which could be considered as a new potential strategy for AD treatment, although we could not exclude other mechanisms involved in counteracting AD processing.

Cydonia oblonga Miller fruit extract exerts an anti-obesity effect in 3T3-L1 adipocytes by activating the AMPK signaling pathway

  • Hyun Sook Lee;Jae In Jung;Jung Soon Hwang;Myeong Oh Hwang;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1043-1055
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The fruit of Cydonia oblonga Miller (COM) is used traditionally in Mediterranean region medicine to prevent or treat obesity, but its mechanism of action is still unclear. Beyond a demonstrated anti-obesity effect, the fruit was tested for the mechanism of adipogenesis in 3T3-L1 preadipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were cultured for 8 days with COM fruit extract (COME) at different concentrations (0-600 ㎍/mL) with adipocyte differentiation medium. The cell viability was measured using an MTT assay; triglyceride (TG) was stained with Oil Red O. The expression levels of the adipogenesis-related genes and protein expression were analyzed by reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS: COME inhibited intracellular TG accumulation during adipogenesis. A COME treatment in 3T3-L1 cells induced upregulation of the adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation and downregulation of the adipogenic transcription factors, such as sterol regulatory element-binding protein 1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α. The COME treatment reduced the mRNA expression of fatty acyl synthetase, adenosine triphosphate-citrate lyase, adipocyte protein 2, and lipoprotein lipase. It increased the mRNA expression of hormone-sensitive lipase and carnitine palmitoyltransferase I in 3T3-L1 cells. CONCLUSIONS: COME inhibits adipogenesis via the AMPK signaling pathways. COME may be used to prevent and treat obesity.

FAHP-HAZOP을 적용한 수소충전소의 위험성평가 방법 연구 (Study on Risk Assessment Method of Hydrogen Station using FAHP-HAZOP)

  • 조영광;한신호
    • 한국가스학회지
    • /
    • 제27권4호
    • /
    • pp.92-101
    • /
    • 2023
  • 기후변화 문제를 해결하기 위해 탄소중립은 이제 선택이 아닌 필수가 되었다. 수소는 재생에너지의 간헐적 생산을 보완할 수 있는 저장 매체일 뿐만 아니라 반응 후 이산화탄소 배출이 없어 활용 분야에서도 좋은 대안으로 여겨지고 있다. 수소 활용 분야 중 하나인 수소자동차의 활성화를 위해서는 수소충전소 인프라 구축이 선행되어야 한다. 수소충전소의 효율적인 운영과 위험성평가를 위해서는 위험요인에 대한 우선순위 선정이 필요하지만, 국내 수소충전소 운영 기간이 짧아 사고에 따른 빈도 데이터가 부족하고 그 신뢰도가 낮다. 본 연구에서는 HAZOP을 통하여 수소충전소에서 발생 가능한 이탈의 원인과 결과를 도출하고 Fuzzy-AHP를 활용하여 분석하려고 한다. 이를 통하여 수소충전소에서 발생 가능한 이탈 원인의 의사결정값을 도출하고 수소 사고사례와 위험성평가에 적용하여 데이터의 신뢰성과 효용성을 확인하고자 한다.

Comparison of different colorimetric assays and application of the optimized method for determining the liberated fluoride contents in various tea extracts

  • Le-Thi Anh-Dao;Do Minh-Huy;Nguyen-Ho Thien-Trang;Nguyen Cong-Hau
    • 분석과학
    • /
    • 제37권2호
    • /
    • pp.87-97
    • /
    • 2024
  • The appropriate intake of fluoride (F-) is beneficial to human health; however, the over-consumption can result in various potentially harmful effects. This study compared different colorimetric reagents, i.e., aluminium-xylenol orange (Al-XO), zirconium-xylenol orange (Zr-XO), and zirconium-alizarin red S (Zr-ARS), for fluoride measurements by the UV-Vis, in terms of reaction mechanisms, method sensitivity, and interferences from aluminium and ferric ions. The colorimetric procedures were optimized, and the analytical methods were evaluated. The goodness of linearity (R2 > 0.998) was obtained for all three assays within the concentration range of 1.0-20.0 mg/L fluoride in deionized water, in which the method sensitivity followed the descending order of Zr-XO > Al-XO > Zr-ARS. The Zr-XO was applied for determining the fluoride in different tea extracts in water (90 ℃ and 60-minute-brewing) and black tea demonstrated the highest fluoride content (3.0-3.6 mg/L). The effects of brewing time and temperature on the release of fluoride in the tea extracts were also investigated, indicating these are critical factors for the fluoride extraction. This study highlighted the application potentials of the UV-Vis measurement as a simple, convenient, and cheap analytical approach and discussed different colorimetric reagents used for fluoride determination in tea extracts in the context that the UV-Vis spectrophotometers are commonly equipped in most laboratories.

반려견 정서상태에 따른 객관적 진단 도구의 신뢰도와 타당도 연구 (Reliability and Validity of Objective Diagnosis Tools According to the Emotional State of Companion Canine)

  • 최인학;박영인;정태호
    • 한국환경과학회지
    • /
    • 제33권4호
    • /
    • pp.279-282
    • /
    • 2024
  • This study aimed to verify the results of emotional analysis with respect to canine behavior as reported in the existing animal behavior field based on the dog vestibular emotional reflex (VER) principle, and to evaluate humans and animals based on empathy gained through true communication rather than human-centered interpretation. A total of 200 canines were divided into non-daily and daily situation groups (n=100 each). To assess the psychological and emotional state of each group, these changes were applied to the principle of VER, and six measurement values were selected: positive emotion (balance and energy), negative emotion (tension/anxiety and stress), and body condition (inhibition and neuroticism). The results showed a statistically significant difference (p<0.05) in positive emotions, negative emotions, and body conditions between the two groups. In addition, balance, energy, tension/anxiety, inhibition, and neuroticism were higher in the non-daily situation group than in the daily situation group, with an exception for stress. Compared with the canine daily situation groups, canine in the non-daily situation groups instinctively observed their surroundings to cope with possible threats, had decreased concentration, and elevated vitals due to high-intensity anxiety. This can be perceived as a state of immediate reaction to possible situations/threats. In conclusion, it was confirmed through Vibra Image technology that canine instability mainly affects three factors: positive emotion, negative emotion, and physical condition.

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh;Rungsima Yeetsorn;Waritnan Wanchan;Michael Fowler;Kamlesh Yadav;Pankaj Koinkar
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.67-95
    • /
    • 2024
  • Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim;Sung Jong Yoo;Jin Young Kim;Hyun S. Park;So Young Lee;Bora Seo;Kwan-Young Lee;Jong Hyun Jang;Hee-Young Park
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.96-110
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines

  • Hye-Gyu Lee;Ga-Hyun Lim;Ju-Hyun An;Su-Min Park;Kyoung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • 제25권1호
    • /
    • pp.1.1-1.15
    • /
    • 2024
  • Background: Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). Objectives: This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. Methods: We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. Results: When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. Conclusion: In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.