• Title/Summary/Keyword: re-sequencing

Search Result 90, Processing Time 0.028 seconds

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

First Report of Melon Soft Rot Disease Caused by Pectobacterium brasiliense in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;Soo-Min Hong;Seung-Yeol Lee;Jeung-Sul Han;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.310-315
    • /
    • 2023
  • In May 2021, characteristic soft rot symptoms, including soft, watery, slimy, black rot, wilting, and leaf collapse, were observed on melon plants (Cucumis melo) in Gokseong, Jeollanam-do, Korea. A bacterial strain, designated KNUB-06-21, was isolated from infected plant samples, taxonomically classified, and phylogenetically analyzed using 16S rRNA and housekeeping gene sequencing. Strain KNUB-06-21 was also examined for compound utilization using the API ID 32 GN system and strain KNUB-06-21 was identified as Pectobacterium brasiliense. Subsequent melon stem inoculation studies using strain KNUB-06-21 showed soft rot symptoms similar to field plants. Re-isolated strains shared phenotypic and molecular characteristics with the original P. brasiliense KNUB-06-21 strain. To our knowledge, ours is the first report of P. brasiliense causing melon soft rot disease in Korea.

First Report of Soft Rot Induced by Dickeya dadantii on Euphorbia hypogaea in Korea

  • Ismaila Yakubu;Ji Ho Song;Yun Ju Lee;Min A Son;Su Hyeon Han;Hyun Gi Kong
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.95-98
    • /
    • 2024
  • In a survey conducted in March 2023, Euphorbia hypogaea plants cultivated within greenhouses in Yongin, Korea exhibited water-soaked areas near the stem base, close to the soil. Subsequent isolation from diseased E. hypogaea led to the identification of a bacterial strain, designated as CBNUMPBL-103. The isolate was identified as Dickeya dadantii through sequencing of the 16s rRNA and phylogenetic analysis. The pathogenicity of the isolate was confirmed by inoculating it into healthy E. hypogaea, resulting in the manifestation of similar symptoms observed during the survey. The re-isolated strain recovered from inoculated plants showed a similar morphology with the inoculated strain. This is the first documentation of D. dadantii causing soft rot of E. hypogaea in Korea.

BSA-Seq Technologies Identify a Major QTL for Clubroot Resistance in Chinese Cabbage (Brassica rapa ssp. pekinesis)

  • Yuan, Yu-Xiang;Wei, Xiao-Chun;Zhang, Qiang;Zhao, Yan-Yan;Jiang, Wu-Sheng;Yao, Qiu-Ju;Wang, Zhi-Yong;Zhang, Ying;Tan, Yafei;Li, Yang;Xu, Qian;Zhang, Xiao-Wei
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.41-41
    • /
    • 2015
  • BSA-seq technologies, combined Bulked Segregant Analysis (BSA) and Next-Generation Sequencing (NGS), are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Clubroot disease, caused by Plasmodiophora brassicae, is a serious threat to Brassica crops. Even we have breed new clubroot resistant varieties of Chinese cabbage (B. rapa ssp. pekinesis), the underlying genetic mechanism is unclear. In this study, an $F_2$ population of 340 plants were inoculated with P. brassicae from Xinye (Pathotype 2 on the differentials of Williams). Resistance phenotype segregation ratio for the populations fit a 3:1 (R:S) segregation model, consistent with a single dominant gene model. Super-BSA, using re-sequencing the parents, extremely R and S DNA pools with each 50 plants, revealed 3 potential candidate regions on the chromosome A03, with the most significant region falling between 24.30 Mb and 24.75 Mb. A linkage map with 31 markers in this region was constructed with several closely linked markers identified. A Major QTL for clubroot resistance, CRq, which was identified with the peak LOD score at 169.3, explaining 89.9% of the phenotypic variation. And we developed a new co-segregated InDel marker BrQ-2. Joint BSA-seq and traditional QTL analysis delimited CRq to an 250 kb genomic region, where four TIR-NBS-LRR genes (Bra019409, Bra019410, Bra019412 and Bra019413) clustered. The CR gene CRq and closely linked markers will be highly useful for breeding new resistant Chinese cabbage cultivars.

  • PDF

Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses

  • Park, Kyung-Do;Kim, Hyeongmin;Hwang, Jae Yeon;Lee, Chang-Kyu;Do, Kyoung-Tag;Kim, Heui-Soo;Yang, Young-Mok;Kwon, Young-Jun;Kim, Jaemin;Kim, Hyeon Jeong;Song, Ki-Duk;Oh, Jae-Don;Kim, Heebal;Cho, Byung-Wook;Cho, Seoae;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1345-1354
    • /
    • 2014
  • Copy number variations (CNVs), important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse.

Functional Genomics for Mass Analysis of Useful Genes in Panax ginseng C.A. Meyer (인삼의 유용유전자원 확보를 위한 기능 유전체연구)

  • Yang, Deok-Chun
    • Proceedings of the Ginseng society Conference
    • /
    • 2004.05a
    • /
    • pp.17-28
    • /
    • 2004
  • As Korean ginseng is hybrid, an individual variation is very severe, and it takes long times in new breeding because it is required 4 years to pick the seed. But, transformation technique makes the high-functional breeding in short time. The focus of these ginseng studies is to find and secure the useful gene. And it is urgent to accumulate the fundamental data for the molecular breeding and secure the useful genes. Therefore, transformation and soil acclimatization technique are necessary to molecular breeding in use of the introduction of functional genes. In this study, it add to secure of new regulation gene and useful gene as to accumulate the fundamental data for the place where it will contribute to raise the national competitive power. To analyze the useful genes in large scale, we constructed CDNA libraries with various tissues, species, and treated tissue. EST analysis of ginseng perform in large scale and build the EST database of ginseng. We perform the full length sequencing about the selected lots of clones that include the entire open reading frame of the amino acid residues and construct cDNA chip with the parental EST clones. Establishment of the transformation and a soil acclimatization system throuth the re-introduction of the selected ginseng gene that related with the secondary metabolism and anti-stress into the ginseng.

  • PDF

Gut Microbiota Community and Its Assembly Associated with Age and Diet in Chinese Centenarians

  • Wang, Fang;Yu, Ting;Huang, Guohong;Cai, Da;Liang, Xiaolin;Su, Haiyan;Zhu, Zhenjun;Li, Danlei;Yang, Yang;Shen, Peihong;Mao, Ruifeng;Yu, Lian;Zhao, Mouming;Li, Quanyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1195-1204
    • /
    • 2015
  • Increasing evidence suggests that gut microbiota underpin the development of health and longevity. However, our understanding of what influences the composition of this community of the longevous has not been adequately described. Therefore, illumina sequencing analysis was performed on the gut microbiota of centenarians (aged 100-108 years; RC) and younger elderlies (aged 85-99 years; RE) living in Bama County, Guangxi, China and the elderlies (aged 80-92 years; CE) living in Nanning City, Guangxi, China. In addition, their diet was monitored using a semiquantitative dietary questionary (FFQ 23). The results revealed the abundance of Roseburia and Escherichia was significantly greater, whereas that of Lactobacillus, Faecalibacterium, Parabacteroides, Butyricimonas, Coprococcus, Megamonas, Mitsuokella, Sutterella, and Akkermansia was significantly less in centenarians at the genus level. Both clustering analysis and UniFraq distance analysis showed structural segregation with age and diet among the three populations. Using partial least square discriminate analysis and redundancy analysis, we identified 33 and 34 operational taxonomic units (OTUs) as key OTUs that were significantly associated with age and diet, respectively. Age-related OTUs were characterized as Ruminococcaceae, Clostridiaceae, and Lachnospiraceae, and the former two were increased in the centenarians; diet-related OTUs were classified as Bacteroidales, Lachnospiraceae, and Ruminococcaceae. The former two were deceased, whereas the later one was increased, in the high-fiber diet. The age and high-fiber diet were concomitant with changes in the gut microbiota of centenarians, suggesting that age and high-fiber diet can establish a new structurally balanced architecture of gut microbiota that may benefit the health of centenarians.

Intragenic DNA Methylation Concomitant with Repression of ATP4B and ATP4A Gene Expression in Gastric Cancer is a Potential Serum Biomarker

  • Raja, Uthandaraman Mahalinga;Gopal, Gopisetty;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5563-5568
    • /
    • 2012
  • Based on our previous report on gastric cancer which documented ATP4A and ATP4B mRNA down-regulation in gastric tumors relative to normal gastric tissues, we hypothesized that epigenetic mechanisms could be responsible. ATP4A and ATP4B mRNA expression in gastric cancer cell lines AGS, SNU638 and NUGC-3 was examined using reverse transcriptase PCR (RT-PCR). AGS cells were treated with TSA or 5'-AzaDC and methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis were performed. MSP analysis was on DNA from paraffin embedded tissues sections and plasma. Expression analysis revealed downregulation of ATP4A and ATP4B genes in gastric cancer cell lines relative to normal gastric tissue, while treatment with 5'-AzaDC re-activated expression of both. Search for CpG islands in their putative promoter regions did not indicate CpG islands (CGI) but only further downstream in the bodies of the genes. Methylation specific PCR (MSP) in the exon1 of the ATP4B gene and exon7 in ATP4A indicated methylation in all the gastric cancer cell lines tested. MSP analysis in tumor tissue samples revealed methylation in the majority of tumor samples, 15/19, for ATP4B and 8/8 for ATP4A. There was concordance between ATP4B and ATP4A down-regulation and methylation status in the tumour samples tested. ATP4B methylation was detectable in cell free DNA from gastric cancer patient's plasma samples. Thus ATP4A and ATP4B down-regulation involves DNA methylation and methylated ATP4B DNA in plasma is a potential biomarker for gastric cancer.

Development of PCR-Based Molecular Marker for Detection of Xanthomonas campestris pv. campestris Race 6, the Causative Agent of Black Rot of Brassicas

  • Afrin, Khandker Shazia;Rahim, Md Abdur;Rubel, Mehede Hassan;Park, Jong-In;Jung, Hee-Jeong;Kim, Hoy-Taek;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.418-427
    • /
    • 2020
  • Xanthomonas campestris pv. campestris (Xcc), the pathogen of black rot which is the most destructive disease of Brassica vegetables throughout the world. Here, we reported two novel sequence-characterized amplified region (SCAR) markers (i.e., XccR6-60 and XccR6-67) for the detection of Xcc race 6 via re-alignment of the complete genome sequences of Xcc races/strains/pathovars. The specificity of SCAR primer sets was verified by mean of PCR amplification using the genomic DNA template of Xcc races/strains/pathovars and two other plant infecting bacterial strains. The PCR result revealed that the XccR6-60 and XccR6-67 primer sets amplified 692-bp and 917-bp DNA fragments, respectively, specifically from race 6, while no visible amplification was detected in other samples. In addition, the SCAR primers were highly sensitive and can detect from a very low concentration of genomic DNA of Xcc race 6. However, the complete genome sequence of Xcc race 6 is not yet publicly available. Therefore, the cloning and sequencing of XccR6-60 and XccR6-67 fragments from race 6 provide more evidence of the specificity of these markers. These results indicated that the newly developed SCAR markers can successfully, effectively and rapidly detect Xcc race 6 from other Xcc races/strains/pathovars as well as other plant pathogenic bacteria. This is the first report for race-specific molecular markers for Xcc race 6.

Investigation of Single Nucleotide Polymorphisms in Porcine Chromosome 2 Quantitative Trait Loci for Meat Quality Traits

  • Do, K.T.;Ha, Y.;Mote, B.E.;Rothschild, M.F.;Choi, B.H.;Lee, S.S.;Kim, T.H.;Cho, B.W.;Kim, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.155-160
    • /
    • 2008
  • Several studies have reported quantitative trait loci (QTL) for meat quality on porcine chromosome 2 (http://www.animalgenome.org/QTLdb/pig.html). For application of the molecular genetic information to the pig industry through marker-assisted selection, single nucleotide polymorphism (SNP) markers were analyzed by comparative re-sequencing of polymerase chain reaction (PCR) products of 13 candidate genes with DNA from commercial pig breeds such as Berkshire, Yorkshire, Landrace, Duroc and Korean Native pig. A total of 34 SNPs were identified in 15 PCR products producing an average of one SNP in every 253 bp. PCR restriction fragment length polymorphism (RFLP) assays were developed for 11 SNPs and used to investigate allele frequencies in five commercial pig breeds in Korea. Eight of the SNPs appear to be fixed in at least one of the five pig breeds, which indicates that different selection among pig breeds might be applied to these SNPs. Polymorphisms detected in the PTH, CSF2 and FOLR genes were chosen to genotype a Berkshire-Yorkshire pig breed reference family for linkage and association analyses. Using linkage analysis, PTH and CSF2 loci were mapped to pig chromosome 2, while FOLR was mapped to pig chromosome 9. Association analyses between SNPs in the PTH, CSF2 and FOLR suggested that the CSF2 MboII polymorphism was significantly associated with several pork quality traits in the Berkshire and Yorkshire crossed F2 pigs. Our current findings provide useful SNP marker information to fine map QTL regions on pig chromosome 2 and to clarify the relevance of SNP and quantitative traits in commercial pig populations.