• Title/Summary/Keyword: re-sampling method(LOOCV, split, 2-, 10-fold CV)

Search Result 1, Processing Time 0.02 seconds

Classification Prediction Error Estimation System of Microarray for a Comparison of Resampling Methods Based on Multi-Layer Perceptron (다층퍼셉트론 기반 리 샘플링 방법 비교를 위한 마이크로어레이 분류 예측 에러 추정 시스템)

  • Park, Su-Young;Jeong, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.534-539
    • /
    • 2010
  • In genomic studies, thousands of features are collected on relatively few samples. One of the goals of these studies is to build classifiers to predict the outcome of future observations. There are three inherent steps to build classifiers: a significant gene selection, model selection and prediction assessment. In the paper, with a focus on prediction assessment, we normalize microarray data with quantile-normalization methods that adjust quartile of all slide equally and then design a system comparing several methods to estimate 'true' prediction error of a prediction model in the presence of feature selection and compare and analyze a prediction error of them. LOOCV generally performs very well with small MSE and bias, the split sample method and 2-fold CV perform with small sample size very pooly. For computationally burdensome analyses, 10-fold CV may be preferable to LOOCV.