• Title/Summary/Keyword: rcp

Search Result 789, Processing Time 0.025 seconds

Revisiting design flood estimation of Nam River Dam basin considering climate change (기후변화를 고려한 남강댐 유역의 홍수량 재산정)

  • Lee, Hyunseung;Lee, Taesam;Park, Taewoong;Son, Chanyoung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.719-729
    • /
    • 2016
  • Extreme events of rainfall has increased mainly from climate change, resulting in more severe floods intensified by land use development. Appropriate estimation of design floods gets more attention to ensuring the safety of life and property in flood-prone areas for hydraulic structures such as dams and levees. In the current study, we reestimated the design flood of the Nam River Dam to adopt the influence of climatic change of hydrometeorological variables including recent datasets of extreme rainfall events. The climate change scenarios of extreme rainfall events in hourly scale that has been downscaled was used in analyzing the annual maximum rainfall for the weather stations in the Nam River Dam basin. The estimates of 200-year and 10,000-year return periods were calculated to provide a design flood and a probable maximum flood case for the Nam River Dam. The results present that the new estimate employing the RCP4.5 and RCP8.5 downscaled data is much higher than the original design flood estimated at the dam construction stage using a 200-year return period. We can conclude that the current dam area might be highly vulnerable and need an enhancement of the dam safety regarding the reduction of damage in Sachen bay from the outflow of Nam River Dam.

Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario (RCP 8.5 기후변화 시나리오의 강수량 변화에 따른 미래 PMPs의 전망)

  • Lee, Okjeong;Park, Myungwoo;Lee, Jeonghoon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Since future climate scenarios indicate that extreme precipitation events will intensity, probable maximum precipitations (PMPs) without being taken climate change into account are very likely to be underestimated. In this study future PMPs in accordance with the variation of future rainfall are estimated. The hydro-meteorologic method is used to calculate PMPs. The orographic transposition factor is applied in place of the conventional terrain impact factor which has been used in previous PMPs estimation reports. Future DADs are indirectly obtained by using bias-correction and moving-averaged changing factor method based on daily precipitation projection under KMA RCM (HEDGEM3-RA) RCP 8.5 climate change scenario. As a result, future PMPs were found to increase and the spatially-averaged annual PMPs increase rate in 4-hour and $25km^2$ was projected to be 3 mm by 2045. In addition, the increased rate of future PMPs is growing increasingly in the future, but it is thought that the uncertainty of estimating PMPs caused by future precipitation projections is also increased in the distant future.

Prediction of Potential Habitat of Japanese evergreen oak (Quercus acuta Thunb.) Considering Dispersal Ability Under Climate Change (분산 능력을 고려한 기후변화에 따른 붉가시나무의 잠재서식지 분포변화 예측연구)

  • Shin, Man-Seok;Seo, Changwan;Park, Seon-Uk;Hong, Seung-Bum;Kim, Jin-Yong;Jeon, Ja-Young;Lee, Myungwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.291-306
    • /
    • 2018
  • This study was designed to predict potential habitat of Japanese evergreen oak (Quercus acuta Thunb.) in Korean Peninsula considering its dispersal ability under climate change. We used a species distribution model (SDM) based on the current species distribution and climatic variables. To reduce the uncertainty of the SDM, we applied nine single-model algorithms and the pre-evaluation weighted ensemble method. Two representative concentration pathways (RCP 4.5 and 8.5) were used to simulate the distribution of Japanese evergreen oak in 2050 and 2070. The final future potential habitat was determined by considering whether it will be dispersed from the current habitat. The dispersal ability was determined using the Migclim by applying three coefficient values (${\theta}=-0.005$, ${\theta}=-0.001$ and ${\theta}=-0.0005$) to the dispersal-limited function and unlimited case. All the projections revealed potential habitat of Japanese evergreen oak will be increased in Korean Peninsula except the RCP 4.5 in 2050. However, the future potential habitat of Japanese evergreen oak was found to be limited considering the dispersal ability of this species. Therefore, estimation of dispersal ability is required to understand the effect of climate change and habitat distribution of the species.

Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model (SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가)

  • Ahn, So Ra;Park, Geun Ae;Jang, Cheol Hee;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.569-583
    • /
    • 2013
  • This study is to evaluate the future climate change impact on hydrological components in the Seolmacheon ($8.54km^2$) mixed forest catchment located in the northwest of South Korea using SWAT (Soil and Water Assessment Tool) model. To reduce the uncertainty, the model was spatially calibrated (2007~2008) and validated (2009~2010) using daily observed streamflow, evapotranspiration, and soil moisture data. Hydrological predicted values matched well with the observed values by showing coefficient of determination ($R^2$) from 0.74 to 0.91 for streamflow, from 0.56 to 0.71 for evapotranspiration, and from 0.45 to 0.71 for soil moisture. The HadGEM3-RA future weather data of Representative Concentration pathway (RCP) 4.5 and 8.5 scenarios of the IPCC (Intergovernmental Panel on Climate Change) AR5 (Assessment Report 5) were adopted for future assessment after bias correction of ground measured data. The future changes in annual temperature and precipitation showed an upward tendency from $0.9^{\circ}C$ to $4.2^{\circ}C$ and from 7.9% to 20.4% respectively. The future streamflow showed an increase from 0.6% to 15.7%, but runoff ratio showed a decrease from 3.8% to 5.4%. The future predicted evapotranspiration about precipitation increased from 4.1% to 6.8%, and the future soil moisture decreased from 4.3% to 5.5%.

Assessment of a rain barrel sharing network in Korea using storage-reliability-yield relationship (저류용량-신뢰도-수요량 관계를 이용한 레인배럴 공유 네트워크의 국내 성능 평가)

  • Kwon, Youjeong;Seo, Yongwon;Park, Chang Kun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.961-971
    • /
    • 2020
  • The Intergovernmental Panel on Climate Change (IPCC) reported that the amount of precipitation in South Korea would increase regardless of the reduction of Greenhouse Gas (GHG) emissions. Moreover, the temporal and spatial rainfall variation would also increase in the future. Due to the geographic allocation of Korea, more than 80% of the annual precipitation occurs in the wet season from early July to late September. It is expected that the average precipitation in this period will increase from the Representative Concentration Pathways (RCP) scenario projections. These predictions imply an increased variability of available water resources. Rainwater harvesting system is widely used as an alternative water resources today. This study introduces a RBSN (rain barrel sharing network) as an efficient way to utilize alternative water resources under the RCP scenarios. The concept of RBSN combines individual rainwater harvesting system to a sharing network, which make the whole system more reliable. This study evaluated a RBSN in South Korea composed of four users based on a storage-reliability-yield (SRY) relationship. The study area comprises all 17 provincal areas in South Korea. The result showed a huge benefit from a RBSN in Korea under the historical rainfall condition. Even in the climate change condition, the results showed that a RBSN is still beneficial but the changes in reliability are different depending on provinces in Korea. The results of this study shows that a RBSN is a very effective and alternative measure that can deal with the impacts of climate change in the near future.

The Estimation and Analysis of Miryang Dam Inflow based on RCP Scenario (RCP 시나리오 기반 밀양댐 미래 유입량 산정 및 결과분석)

  • Choo, Tai Ho;Ko, Hyun Soo;Yoon, Hyeon Cheol;Noh, Hyun Seok;Son, Hee Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3469-3476
    • /
    • 2015
  • The Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society. In Korea, the territory has east high west low type and the rainfall is concentrated in the summer season. A nation having these topography and precipitation condition like Korea has to basically needs support of hardware alternatives. However, the right places decrease gradually and the resistance of the public opinion for national water resources policy stiffens gradually. The climate change has an effect in water resources fields and has a close relation. In the present study, therefore, future inflow of Miryang multipurpose dam basin is estimated by using SWAT model applied RCP 4.5 and 8.5 scenarios of "Korea Meteorological Administration" and considering the results, the future direction is purposed to operate the dam. As a result, the rainfall pattern is changed from traditional peak form to flat form. The dam operation rule in accordance with changing precipitation pattern has to be modified from the conventional operation rule and a new plan has to be established to meet a situation.

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.

A Study on the Establishment of Quantitative Standards of Landslides Vulnerability by Climate Change (기후변화에 따른 산사태 취약성의 정량적 평가기준 설정 연구)

  • Lee, Dong-Kun;Kim, Hogul;Seo, Changwan;Song, Changkeun;Yu, Jeong Ah;Park, Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • Average cumulative precipitation in summer have increased by 350 mm compared with 1980s. As precipitation is expected to increase, the risk of landslides by heavy rainfall also is expected to rise. Therefore, establishment of adaptation plan for landslides is urgently needed. In 2011, Korea Ministry of Environment(KME) conducted vulnerability assessment to support establishment of adaptation plan for local governments. However, the result of vulnerability assessment had three limitations. First, KME didn't use standard scenario of Korea Meteorological Administration(KMA). Second, They conducted same standardization method for all variables. Third, They derived relative vulnerability which is not quantitative. The purpose of this study is to improve the limitations of existing vulnerability assessment and identify quantitative criteria to ensure scientific reliability. To achieve this purpose, we carried out three ways of advancement. First, application of new climate scenario, which is RCP 8.5 from KMA. Second, improvement of variables of vulnerability assessment. Third, derivation of quantitative criteria of vulnerability. The findings can support establishment of adaptation plan for local governments more effectively.

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Repair of Acute Aortic Arch Dissection with Hypothermic Circulatory Arrest and Retrograde Cerebral Perfusion (저체온순환정지와 역행성 뇌관류에 의한 대동맥궁을 침범한 급성 대동맥 박리증의 수술결과)

  • 이삼윤
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • Background: Acute thoracic aortic dissections involving the aortic arch differ in diagnosis, surgical procedures, and operative results compared to those that do not involve the aortic arch. In general cerebral perfusion under deep hypothermic circulatory arrest (HCA) is performed during the repair of the aortic arch dissection. Here, we report our surgical results of the aortic arch dissection repair using retrograde cerebral perfusion (RCP) and its safety. Material and Method: Between January 1996 and June 2002, 22 consecutive patients with aortic arch dissection underwent aortic arch repair. In 20 of them RCP was performed under HCA. RCP was done through superior vena cava in 19 patients and by systemic retrograde venous perfusion in 1, in whom it was difficult to reach the SVC. When the patient's rectal temperature reached 16 to 18$^{\circ}C$, systemic circulation was arrested, and the amount of RCP amount was 481.1 $\pm$292.9 $m\ell$/min with perfusion pressure of 20∼30 mmHg. Result: There were two in-hospital deaths (4.5%) and one late death (9.1%). Mean circulatory arrest time (RCP time) was 54.0$\pm$ 13.4 minutes (range, 7 to 145 minutes). RCP time has no correlation with the appearance of consciousness, recovery of orientation, or ventilator weaning time (p=0.35, 0.86, and 0.92, respectively). Ventilator weaning was faster in patients with earlier recovery of consciousness and orientation (r=0.850, r=926; p=0.000, respectively). RCP of more than 70 minutes did not affect the appearance of consciousness, recovery of orientation, ventilator weaning time, exercise time, or hospital stay (p=0.42, 0.57, 0.60, 0.83, and 0.51, respectively). Conclusion: Retrograde cerebral perfusion time under hypothermic circulatory arrest during repair of aortic arch dissection may not affect recovery of orientation, ventilator weaning time, neurologic complications, and postoperative recovery.