• Title/Summary/Keyword: raw ginseng

Search Result 280, Processing Time 0.028 seconds

Variation in Content of Marker Compounds and Quality of Processed White Ginseng of Different Cultivation Ages from Different Regions (지역별, 연근별 가공백삼의 품질과 지표 성분의 변이)

  • Nam, Ki Yeul;Hwang, Gwang Bo;Lee, Dae Young;Han, Jin Soo;Noh, Hyung Jun;Kim, Dong Hwi;Kim, Geum Soog
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.408-416
    • /
    • 2018
  • Background: The ginsenosides Rb1 (G-Rb1) and Rg1 (G-Rg1) are used as marker compounds, and are the principal bioactive compounds assessed in the quality control of white ginseng. This study was conducted to analyze white ginseng samples of different and to obtain useful data for the quality control of white ginseng. Methods and Results: The variation in the content of G-Rb1 and G-Rg1 was evaluated among 35 samples of 4-, 5-, and 6-year-old white ginseng. The content of both G-Rb1 and G-Rg1 did not significantly differ among ages, and the relative ratio of the maximum to the minimum content of these within ginseng of the same ages was more than two. However, the ratio of G-Rb1 to G-Rg1 content in the 5- and 6-year-old ginseng was significantly higher than that in the 4-year-old one. According to the 'Ginseng industrial act', the standard (w/w, %) minimum $G-Rg_1$ and $G-Rb_1$ content is 0.10% and 0.20% or more, respectively. Among the 35 samples examined, the content of $G-Rg_1$ was found to be 0.124 - 0.399% with none being less than the standard level, while that of $G-Rb_1$, was 0.147 - 0.595%, with 4 samples (11.4%) failing to meet the standard levels. The content of $G-Rg_1$ and $G-Rb_1$ did not show a constant relationship with the size of ginseng. Conclusions: In our study, the content of both G-Rg1 and G-Rb1 varied widely, and there was no significant difference among cultivation ages. The results of the present study might provide useful information for the quality control of raw ginseng and processed white ginseng using marker compound.

Qualities and Anti-inflammatory Activity of Kyungokgos Sold in Local Markets (국내 시판 경옥고 제품의 품질 특성 및 항염증 활성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Kim, Hyun-Ho;Seong, Bong-Jae;Kim, Sun-Ick;Han, Seung-Ho;Kang, Eun Ju;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.335-341
    • /
    • 2013
  • Kyungokgos purchased in local markets in Korea vary in their combination and mixing ratios during processing. This study was investigated qualities of Kyungokgos manufactured traditionally to evaluating its qualities. The general components of Kyungokgos were moisture (18.62~49.78%), ash (0.198~1.211%), protein (0.89~3.58%), lipid (0.16~1.14%) and carbohydrates (47.95~77.08%). The color values of L, a, and b were 26.49~73.87, 16.51~38.64, and 45.41~88.94, respectively. The viscosity was classified into three non-Newtonian type groups: high, medium, and non-dilatant, according to the increase of loop execution times. Three extracts (KOG-1, -7, and -8, in a 30-fold dilution) showed no cytotoxicity toward RAW 264.7 cells, while the extracts of KOG-2, -4, and -5 showed a low cytotoxic effect. KOG-1 and -2 extracts with low cytotoxicity markedly inhibited the production of the inflammatory mediators-nitric oxide (NO) and tumor necrosis factor-alpha (TNF-${\alpha}$) in LPS-stimulated RAW 264.7 cells. These results indicate that KOG-1 and -2 extracts have anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages.

Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells

  • Kim, Sokho;Oh, Myung-Hoon;Kim, Bum-Seok;Kim, Won-Il;Cho, Ho-Seong;Park, Byoung-Yong;Park, Chul;Shin, Gee-Wook;Kwon, Jungkee
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.365-370
    • /
    • 2015
  • Background: The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. Methods: Raw 264.7 cells were pretreated with GRo (up to $200{\mu}M$) for 1 h before treatment with 1 mg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. Results: GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. Conclusion: GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1.

Anti-Oxidative and Anti-inflammatory Effect of Combined Extract and Individual Extract of GamiSaengmaeksan (가미생맥산(加味生脈散) 및 개별약재의 항산화 및 항염증 효능에 대한 비교 연구)

  • Ji, Joong-Gu
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Objectives : The aim of this study is to investigate the various effects of individual or combined extract of GamiSaengmaeksan (GSS) on cell viability, anti-inflammatory and antioxidant activityMethods : In order to evaluate cytotoxicity, MTT assay was performed. We investigated the levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 and interleukin (IL)-1β, and nitric oxide(NO) in LPS-induced RAW 264.7 cells to check the effects on anti-inflammatory activity. The level of NO production in RAW 264.7 cells was measured by using Griess reagent. The levels of cytokines and ROS were measured by Luminex and Flow cytometry, respectively.Results : At concentration of 200 ㎍/㎖ GSS, cytotoxicity was observed in RAW 264.7 cells. However, at concentration less than 100 ㎍/㎖ of both combine and individual GSS, cytotoxicity was not observed in Raw 264.7 cells. However, the level of ROS in RAW 264.7 cells were decreased at both extract of 100 ㎍/㎖ GSS. Also, the level of NO in RAW 264.7 cells were decreased from extraction of concentration of 100 ug/ml in GSS and individual-extraction of Liriopis Tuber, White Ginseng and Glycyrrhizae Radix. In addition, productions of pro-inflammatory cytokines (TNF-α) in LPS-induced RAW 264.7 cells were decreased from extraction of concentration of 10 and 100 (㎍/㎖) in GSS and individual-extraction of Liriopis Tuber.Conclusions : It is concluded that combined extract of GSS appears to be more effective in anti-oxidation and anti-inflammatory effect than those in individual-extraction of GSS. These results may be developed as a raw material for new therapeutics to ease the symptoms related with inflammatory and oxidative stress.

Fermentation Characteristics for Extruded Hair of Tissue Cultured Mountain Ginseng

  • Ji, Yan-Qing;Yang, Hye-Jin;Tie, Jin;Kim, Mi-Hwan;Yang, Jae-Ghan;Chung, Ki-Wha;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.156-161
    • /
    • 2009
  • Effects of extrusion conditions (barrel temperature and moisture content) and fermentation time on the antioxidant properties of root hair of tissue cultured raw mountain ginseng (MG) were investigated. The barrel temperature/ moisture combinations were: $110^{\circ}C$/25% (MG1), $140^{\circ}C$/25% (MG2), $110^{\circ}C$/35% (MG3) and $140^{\circ}C$/35% (MG4). Red ginseng (RG) was also investigated. The contents of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and polyphenolic increased after fermentation in RG and even more in MG, while extruded ginseng samples exhibited little change. The increases noted with MG and RG occurred during the first 4 days of fermentation. DPPH radical scavenging activity decreased after extrusion and was significantly higher in MG (20.93%) than RG (1.63%) on the first day of fermentation. DPPH radical scavenging activity in the barrel temperature/moisture combinations were 19.01% (MG1), 14.45% (MG2), 20.37% (MG3) and 15.78% (MG4). The content of polyphenolic compounds in ginseng samples displayed a similar trend. Acidic polysaccharide in RG and MG1${\sim}$MG4 were higher than MG, but decreased during fermentation. Crude saponin in RG and MG1${\sim}$MG4 decreased after 15 days of fermentation, while increasing in MG.

Selection of Suitable Organic Matter for To-jik Nursery in Panax ginseng C.A. Meyer (인삼 재배 시 토직모 생산에 적합한 유기물 선발)

  • Kim, Dong-Won;Kim, Hee-Jun;Park, Jong-Suk;Kim, Dae-Hyang;Cheong, Seong-Soo;Ryu, Jeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • This experiment was carried out to select suitable organic matter in To-jik nursery (self soil nursery) for complement To-jik nursery's defects that are deterioration of raw material by poor quality of seed ginseng and reduction of the quantity in seed ginseng production. Organic matter used were Yacto, rice bean, defatted rice bran, soybean cake and their mixture. As follows, bulk density in soil physical property by treating organic composts was the greatest in soybean cake and the next was followed by mix, Yacto, defatted rice bran, and rice bran treatment in order. Soil pore space ratio was totally the opposite; that was rice bran the first and followed by defatted rice bran, Yacto, mix and soybean cake treatment. The incidence rate of damping off by treating organic composts was 1.5% in both soybean cake and mix while the others was 1.0%. Emergence time was the same among treatment on April 16 and Emergence rate was the highest at 73% in Yacto. There was no significant differences among treatment in the growth of aboveground part but it was a little better in defatted rice bran treatment. In Yacto treatment, the growth of underground part, total root number per kan, rate of first grade ginseng seedling, and rate of usable ginseng seedling etc. were entirely higher but there was little differences. Using defatted rice bran was slightly lower in productivity compared to Yacto, but the possibility was high as a alternative for Yacto in a view of managing cost down.

Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2

  • Yu, Tao;Yang, Yanyan;Kwak, Yi-Seong;Song, Gwan Gyu;Kim, Mi-Yeon;Rhee, Man Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2017
  • Background: Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng, a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. Methods: The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis $factor-{\alpha}/interferon-{\gamma}-treated$ synovial cells, and HEK293 cells transfected with various inducers of inflammation. Results: G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$. G-Rc also markedly suppressed the activation of TANK-binding kinase $1/I{\kappa}B$ kinase ${\varepsilon}/interferon$ regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. Conclusion: G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase $1/I{\kappa}B$ kinase ${\varepsilon}/interferon$ regulatory factor-3 and p38/ATF-2 signaling.

Gastroprotective effects of the nonsaponin fraction of Korean Red Ginseng through cyclooxygenase-1 upregulation

  • Lee, Jeong-Oog;Kim, Ji Hye;Kim, Sunggyu;Kim, Mi-Yeon;Hong, Yo Han;Kim, Han Gyung;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.655-663
    • /
    • 2020
  • Background: Korean Red Ginseng is known to exhibit immune-enhancing and anti-inflammatory properties. The immune-enhancing effects of the nonsaponin fraction (NSF) of Korean Red Ginseng have been studied in many reports. However, the gastroprotective effect of this fraction is not fully understood. In this study, we demonstrate the activities of NSF for gastrointestinal protection and its related critical factor. Methods: The in vitro and in vivo regulatory functions of NSF on cyclooxygenase-1 (COX-1) messenger RNA and protein levels were examined by reverse transcription polymerase chain reaction and immunoblotting analyses. Gastroprotective effects of NSF were investigated by histological score, gastric juice pH, and myeloperoxidase activity on indomethacin-induced, cold stress-induced, and acetylsalicylic acid-induced gastritis and dextran sulfate sodium-induced colitis in in vivo mouse models. Results: NSF did not show cytotoxicity, and it increased COX-1 messenger RNA expression and protein levels in RAW264.7 cells. This upregulation was also observed in colitis and gastritis in vivo models. In addition, NSF treatment in mice ameliorated the symptoms of gastrointestinal inflammation, including histological score, colon length, gastric juice pH, gastric wall thickness, and myeloperoxidase activity. Conclusion: These results suggest that NSF has gastroprotective effects on gastritis and colitis in in vivo mouse models through COX-1 upregulation.

Comparisons of Ginsenosides and Anti-inflammatory Effects of White Ginseng and Puffed Red Ginseng (인삼과 팽화홍삼의 Ginsenoside 함량 및 항염효과 비교)

  • Shin, Yong-Seo
    • Korean journal of food and cookery science
    • /
    • v.26 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • In this study, the ginsenoside contents and anti-inflammatory effects of white ginseng (WG) and puffed red ginseng (PRG) were compared. The contents of Rb1, Rg5 and Rk1 were significantly higher in PRG than in WG, whereas the contents of Rg1 and Rb2 were decreased in PRG. The levels of NO production and iNOS expression were suppressed in LPS-stimulated cells by treatment with WG and PRG. Further, the production of cytokines (TNF-$\alpha$ and INF-$\gamma$) and inflammatory proteins (NF-${\kappa}B$ and COX-2) was decreased in cells upon treatment with any of the ginsenosides. The high NO inhibitory activity and cytokine production of PRG is caused by differences in the composition of ginsenosides produced.

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.