• Title/Summary/Keyword: rational homotopy theory

Search Result 6, Processing Time 0.017 seconds

RATIONAL HOMOTOPY TYPE OF MAPPING SPACES BETWEEN COMPLEX PROJECTIVE SPACES AND THEIR EVALUATION SUBGROUPS

  • Gatsinzi, Jean-Baptiste
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.259-267
    • /
    • 2022
  • We use L models to compute the rational homotopy type of the mapping space of the component of the natural inclusion in,k : ℂPn ↪ ℂPn+k between complex projective spaces and show that it has the rational homotopy type of a product of odd dimensional spheres and a complex projective space. We also characterize the mapping aut1 ℂPn → map(ℂPn, ℂPn+k; in,k) and the resulting G-sequence.

ON THE RATIONAL COHOMOLOGY OF MAPPING SPACES AND THEIR REALIZATION PROBLEM

  • Abdelhadi Zaim
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1309-1320
    • /
    • 2023
  • Let f : X → Y be a map between simply connected CW-complexes of finite type with X finite. In this paper, we prove that the rational cohomology of mapping spaces map(X, Y ; f) contains a polynomial algebra over a generator of degree N, where N = max{i, πi(Y)⊗ℚ ≠ 0} is an even number. Moreover, we are interested in determining the rational homotopy type of map(𝕊n, ℂPm; f) and we deduce its rational cohomology as a consequence. The paper ends with a brief discussion about the realization problem of mapping spaces.

FIBREWISE INFINITE SYMMETRIC PRODUCTS AND M-CATEGORY

  • Hans, Scheerer;Manfred, Stelzer
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.671-682
    • /
    • 1999
  • Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E\;\longrightarrow\;B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E)\;l\ongrightarrow\;B$. For any pointed space B let $G_I(B)\;\longrightarrow\;B$ be the i-th Ganea fibration. Defining $M_R-cat(B):= inf{i\midR_f(G_i(B))\longrihghtarrow\;B$ admits a section} we obtain an approximation to the Lusternik-Schnirelmann category of B which satisfies .g.a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_Q$-cat(B) coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to cat (B) by a result of K.Hess. All the constructions more generally apply to the Ganea category of maps.

  • PDF

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

Evaluation Subgroups of Mapping Spaces over Grassmann Manifolds

  • Abdelhadi Zaim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.131-139
    • /
    • 2023
  • Let Vk,n (ℂ) denote the complex Steifel and Grk,n (ℂ) the Grassmann manifolds for 1 ≤ k < n. In this paper, we compute, in terms of the Sullivan minimal models, the evaluation subgroups and, more generally, the relative evaluation subgroups of the fibration p : Vk,k+n (ℂ) → Grk,k+n (ℂ). In particular, we prove that G* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) is isomorphic to Grel* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) ⊕ G* (Vk,k+n (ℂ)).