• Title/Summary/Keyword: ratio of slenderness

Search Result 396, Processing Time 0.022 seconds

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

An Experimental Study on Evaluation of Axially Compressive Buckling Strength of Corroded Temporary Steel (부식 손상된 가시설 강재의 축압축 좌굴강도 추정에 관한 실험적 연구)

  • Kim, In Tae;Lee, Myoung Jin;Shin, Chang Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.135-146
    • /
    • 2011
  • Steel structures have been generally painted to prevent corrosion damage. However, the painted film is deteriorated with increase in service life, and then corrosion damage resulting in cross sectional area occurs on steel surface. As a result, the buckling strength of steel structures can be decreased due to the corrosion damages. The evaluation method of the axial buckling strength of columns about a variety of section shapes and supporting conditions have been presented, but evaluation method of buckling strength about irregular nonprismatic columns is not established. In this study, the axial buckling strength of corroded steels was evaluated based on the buckling test results of corroded steel specimens that were cut off at a temporary steel structure. The corroded specimens were picked up total 10 specimens according to various slenderness ratio from the web of a temporary structure's main beam. The length of specimens is 200, 300, 400, 500 and 600mm respectively. The rust productions were removed by the chemical treatment. Then, the surface geometry was measured at intervals of $1{\times}1mm$ by using the optical 3D digitizing system, and the residual thickness of the specimens was calculated. The axial buckling test was performed on 10 corroded specimens and 12 non-corroded specimens under the fixed-fixed support condition. From the test results, the effect of corrosion damages on axial buckling load was investigated. Regardless of corrosion damage degree, the axial buckling strength of corroded specimens and non-corroded specimens was evaluated identically by using minimum average residual thickness or average residual thickness to minus its standard deviation. Reasonable measuring intervals of residual thickness was proposed by using the results to apply for practical works.

Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams (콘크리트 채움 U형 메가 합성보의 내진성능 평가)

  • Lee, Cheol Ho;Ahn, Jae Kwon;Kim, Dae Kyung;Park, Ji-Hun;Lee, Seung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.111-122
    • /
    • 2017
  • In this paper, the applicability of a 1900mm-deep concrete-filled U-shaped composite beam to composite ordinary moment frames (C-OMFs) was investigated based on existing test results from smaller-sized specimens and supplemental numerical studies since full-scale seismic testing of such a huge sized beam is practically impossible. The key issue was the web local buckling of concrete-filled U section under negative bending. Based on 13 existing test results compiled, the relationship between web slenderness and story drift capacity was obtained. From this relationship, a 1900mm-deep mega beam, fabricated with 25mm-thick plate was expected to experience the web local buckling at 2% story drift and eventually reach a story drift over 3%, thus much exceeding the requirements of C-OMFs. The limiting width to thickness ratio according to the 2010 AISC Specification was shown to be conservative for U section webs of this study. The test-validated supplemental nonlinear finite element analysis was also conducted to further investigate the effects of the horizontal stiffeners (used to tie two webs of a U section) on web local buckling and flexural strength. First, it is shown that the nominal plastic moment under negative bending can be developed without using the horizontal stiffeners, although the presence of the stiffeners can delay the occurrence of web local buckling and restrain its propagation. Considering all these, it is concluded that the 1900mm-deep concrete-filled U-shaped composite beam investigated can be conservatively applied to C-OMFs. Finally, some useful recommendations for the arrangement and design of the horizontal stiffeners are also recommended based on the numerical results.

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.

Foundation Methods for the Soft Ground Reinforcement of Lightweight Greenhouse on Reclaimed Land: A review (간척지 온실 기초 연약지반 보강 방법에 대한 고찰)

  • Lee, Haksung;Kang, Bang Hun;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.440-447
    • /
    • 2020
  • The demand for large-scale horticultural complexes utilizing reclaimed lands is increasing, and one of the pending issues for the construction of large-scale facilities is to establish foundation design criteria. In this paper, we tried to review previous studies on the method of reinforcing the foundation of soft ground. Target construction methods are spiral piles, wood piles, crushed stone piles and PF (point foundation) method. In order to evaluate the performance according to the basic construction method, pull-out resistance, bearing capacity, and settlement amount were measured. At the same diameter, pull-out resistance increased with increasing penetration depth. Simplified comparison is difficult due to the difference in reinforcement method, diameter, and penetration depth, but it showed high bearing capacity in the order of crushed stone pile, PF method, and wood pile foundation. In the case of wood piles, the increase in uplift resistance was different depending on the slenderness ratio. Wood, crushed stone pile and PF construction methods, which are foundation reinforcement works with a bearing capacity of 105 kN/㎡ to 826 kN/㎡, are considered sufficient methods to be applied to the greenhouse foundation. There was a limitation in grasping the consistent trend of each foundation reinforcement method through existing studies. If these data are supplemented through additional empirical tests, it is judged that a basic design guideline that can satisfy the structure and economic efficiency of the greenhouse can be presented.