• Title/Summary/Keyword: ratio of slenderness

Search Result 396, Processing Time 0.025 seconds

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.313-336
    • /
    • 2017
  • This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen's nonlocal elasticity theory which captures the small size effects and using the Hamilton's principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied.

Development of Calibrating Instrument for Tool Wear using Spindle Orientation Function in End Milling (엔드밀 가공시 주축 오리엔테이션 기능을 통한 공구마멸 보정 장치의 개발)

  • Kim, Jeon-Ha;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1095-1102
    • /
    • 2003
  • The most important thing in measuring the tool wear is to set up the measurement base. The end mill that is being used for machining of die is difficult to set up the base and to measure the tool wear because of geometric properties of that such as a helix and relief angle. In this study, a new instrument using spindle orientation function in end milling is developed to measure the tool wear and evaluated by the measuring system on the machine. Finally, this new method makes possible the wear measurement of same position and reduces the measuring time compared with the measuring methods such as the microscope and CCD.

HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 정사각형판

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.69-75
    • /
    • 1990
  • In this paper, ultimate compressive strength of TMCP 50HT steel plates (yield stress .sigma.$_{o}$=36kg/mm$^{2}$) with HAZ softening is studied. Finite element method formulated by the author is applied to analyze the elasto-plastic large deflection behaviour of the plates. The influence of HAZ softening breadth, welding direction and slenderness ratio on the ultimate compressive strength is investigated. The results obtained are summarized as 1) With the increasing of the HAZ softening breadth, early plasticity on the plates is formed and then the ultimate compressive strength is decreased, in which about 8% of the ultimate strength for the plate with h/t=4(h: HAZ softening breadth, t: plate thickness) was reduced comparing with no HAZ softening. 2) The large decrease of the ultimate strength for the case that the welding direction is normal to the loading direction is occurred than the case that the welding direction is parallel to the loading direction. 3) The influence of HAZ softening on the ultimate compressive strength is serious for thick plates, while it may be negligible for thin plates.s.

  • PDF

Free Vibrations of Axially Loaded Timoshenko Beams resting on Elastic Foundation (탄성지반 위에 놓인 축하중을 받는 Timoshenko보의 자유진동)

  • Lee, Tae-Eun;Lee, Jae-Man;Lee, Jong-Kook;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.712-717
    • /
    • 2000
  • The main purpose of this paper is to present both the fundamental and some higher natural frequencies of axially loaded Timoshenko beams resting on the elastic foundation. The non-dimensional differential equation governing the free vibrations of such beam is derived in which the effects of rotatory inertia and shear deformation are included. The Improved Euler method and Determinant Search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. The hinged-hinged, hinged-clamped and clamped-clamped end constraints are applied in numerical examples. The relations between frequency parameters and both the foundation parameter and slenderness ratio are presented in figures. The effect of cross-sectional shapes is also investigated.

  • PDF

Behavior of concrete-filled double skin steel tube beam-columns

  • Hassan, Maha M.;Mahmoud, Ahmed A.;Serror, Mohammed H.
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1141-1162
    • /
    • 2016
  • Concrete-filled double skin steel tube (CFDST) beam-columns are widely used in industrial plants, subways, high-rise buildings and arch bridges. The CFDST columns have the same advantages as traditional CFT members. Moreover, they have lighter weight, higher bending stiffness, better cyclic performance, and have higher fire resistance capacities than their CFT counterparts. The scope of this study is to develop finite element models that can predict accepted capacities of double skin concrete-filled tube columns under the combined effect of axial and bending actions. The analysis results were studied to determine the distribution of stresses among the different components and the effect of the concrete core on the outer and inner steel tube. The developed models are first verified against the available experimental data. Accordingly, an extensive parametric study was performed considering different key factors including load eccentricity, slenderness ratio, concrete compressive strength, and steel tube yield strength. The results of the performed parametric study are intended to supplement the experimental research and examine the accuracy of the available design formulas.

Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam

  • Panchore, Vijay;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.765-773
    • /
    • 2017
  • The quadratic B-spline finite element method yields mass and stiffness matrices which are half the size of matrices obtained by the conventional finite element method. We solve the free vibration problem of a rotating Rayleigh beam using the quadratic B-spline finite element method. Rayleigh beam theory includes the rotary inertia effects in addition to the Euler-Bernoulli theory assumptions and presents a good mathematical model for rotating beams. Galerkin's approach is used to obtain the weak form which yields a system of symmetric matrices. Results obtained for the natural frequencies at different rotating speeds show an accurate match with the published results. A comparison with Euler-Bernoulli beam is done to decipher the variations in higher modes of the Rayleigh beam due to the slenderness ratio. The results are obtained for different values of non-uniform parameter ($\bar{n}$).

Free Vibrations of Horizontally Curved Beams (수평 곡선보의 자유진동 해석)

  • Lee, Byoung-Koo;Oh, Sang-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.151-156
    • /
    • 1996
  • The differential equations governing free, out of plane vibrations of horizontally curved beams are derived and solved numerically to obtain the natural frequencies and the mode shapes. The Runge-Kutta method and Regula-Falsi method are used to integrate the differential equations and to determine the natural frequencies, respectively. In nu- merical examples, the hinged-clamped end constraint is considered and four lowest frequency parameters are reported as functions of four non-dimensional system parameters: (1) opening angle, (2) slenderness ratio, (3) shear parameter and (4) stiffness parameter. Also, typical mode shapes of displacements and stress resultants are shown.

  • PDF

Approximate Optimization of High-speed Train Shape and Tunnel Condition to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 열차-터널 조건의 근사최적설계)

  • Kim, Jung-Hui;Lee, Jong-Soo;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1023-1028
    • /
    • 2004
  • A micro-pressure wave is generated by the high-speed train which enters a tunnel, and it causes explosive noise and vibration at the exit. It is known that train speed, train-tunnel area ratio, nose slenderness and nose shape mainly influence on generating micro-pressure wave. So it is required to minimize it by searching optimal values of such train shape factors and tunnel condition. In this study, response surface model, one of approximation models, is used to perform optimization effectively and analyze sensitivity of design variables. Owen's randomized orthogonal array and D-optimal Design are used to construct response surface model. In order to increase accuracy of model, stepwise regression is selected. Finally SQP(Sequential Quadratic Programming) optimization algorithm is used to minimize the maximum micro-pressure wave by using built approximation model.

  • PDF

The Structural Engineering Design and Construction of the Highest Occupiable Skybridge in the World: The Address Jumeirah Resort, Dubai, UAE

  • Hadow, Zaher;Dannan, Yamen
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The Address Jumeirah Resort is a mixed-use 77-story tower reaching a height of 301 meters with a slenderness ratio of 13.5:1. The development is situated in the Jumeirah Beach District and accommodates 217 key five-star hotel suites, 478 residential apartments, 444 serviced-branded apartments, retail shops, ballrooms and entertainment facilities around the premises. The building has over 242,000 m2 of usable area. The project is an award-winning development that broke multiple Guinness records. The focus of the paper is to present the challenges faced in the structural design and construction of the super tall tower and the highest occupiable skybridge in the world.

Development of Calibration Instrument far Tool Wear Measurement using Spindle Orientation Function in End Milling (엔드밀 가공시 주축 오리엔테이션 기능을 통한 공구마멸측정 보정 장치의 개발)

  • 강익수;김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.149-153
    • /
    • 2003
  • The most important thing in measuring the tool wear is to set up the measurement base. The end mill that is being used for machining is difficult to set up the base and to measure the tool wear because of geometric properties of that such as a helix and relief angle. In this study, a new instrument using spindle orientation function in end milling is developed to measure tool wear and evaluated by measuring system on the machine. Finally, this new method makes possible the wear measurement of same position and reduces measuring time compared with measuring methods such as the microscope and CCD.

  • PDF