• Title/Summary/Keyword: rating bridges

Search Result 73, Processing Time 0.027 seconds

Evaluation of Deterioration on Steel Bridges Based on Bridge Condition Ratings

  • Park, Chan-Hee
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2004
  • Recent developments in Bridge Management Systems (BMS) and in Life-Cycle Cost (LCC) of bridges, have raised the need for evaluation procedure of future condition (Deterioration) of a bridge. Predicting future deterioration is not an easy task due to limited past data to extrapolate from and also due to difficulty in measuring actual deterioration such as section loss of steel on an actual steel bridge. Also, increase in live load and reduction of resistance are random variables, thus a probabilistic approach should be adopted for determining the future deterioration. Due to difficulties in evaluation of future deterioration on steel bridges, accepting uncertainties within a reasonable error, a deterministic procedure using bridge condition rating can be a useful tool for projection of future condition of bridges to identify repair and maintenance needs. The object of this paper is to determine applicability of evaluating deterioration of steel bridge components based on Bridge condition ratings. Bridge condition ratings of bridge components show wide variation for bridges of same age and does not directly correlate well with the age of the bridge and/or deterioration of the bridge. High uncertainty can be reduced by breaking down the rating and by sensitivity analysis. From refined condition rating data, generalized deterioration profile of structures based on age can be derived. Examples are shown for sample bridges in USA. Approximately, 3,000 short to medium span steel bridges were listed in the inventory database. Results show wide variation of rating factors but by subdividing the Bridge condition ratings for various categories general deterioration profiles of steel bridges can be determined.

Load rating of box girder bridges based on rapid testing using moving loads

  • Hong Zhou;Dong-Hui Yang;Ting-Hua Yi;Hong-Nan Li
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.371-382
    • /
    • 2023
  • Box girder bridges are now widely used in bridge construction, and it is necessary to perform load rating regularly to evaluate the load capacity of box girder bridges. Load testing is a common measure for load rating. However, the bridge must be loaded by many trucks under different loading conditions, which is time-consuming and laborious. To solve this problem, this paper proposes a load rating method for box girder bridges based on rapid moving loads testing. The method includes three steps. First, the quasi-influence factors of the bridge are obtained by crossing the bridge with rapidly moving loads, and the structural modal parameters are simultaneously obtained from the dynamic data to supplement. Second, an objective function is constructed, consisting of the quasi-influence factors at several measurement points and structural modal parameters. The finite element model for load rating is then updated based on the Rosenbrock method. Third, on this basis, a load rating method is proposed using the updated model. The load rating method proposed in this paper can considerably reduce the time duration of traditional static load testing and effectively utilize the dynamic and static properties of box girder bridges to obtain an accurate finite element model. The load capacity obtained based on the updated model can avoid the inconsistency of the evaluation results for the different structural members using the adjustment factors specified in codes.

Application of Proposed Rating Equations using LRFD Beam-Column Interaction Equations for Girders and Towers in Steel Cable-Stayed Bridges (강사장교 거더와 주탑에 하중저항계수설계법의 보-기둥 상관식을 사용한 내하율 산정식 적용)

  • Choi, Dong Ho;Yoo, Hoon;Lee, Beom Soo;Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • As girders and towers in cable-stayed bridges are subject to bending moments as well as axial forces, the conventional load rating equation, which considers only the single force effect, cannot be used to evaluate the rating factors of cable-stayed bridges. The load rating equation for components in cable-stayed bridges is not currently established yet. In this paper, we propose load rating equations for girders and towers in cable-stayed bridges using the interaction equations for beam-column members. Moving load analyses were performed for the cases of a maximum axial compressive force, maximum positive moment and maximum negative moment for each component in cable-stayed bridges and detailed procedures to apply proposed equations were presented. The Dolsan Grand Bridge was used to verify the validity of proposed equations. The conventional load rating equation overestimates rating factors of girders and towers in the Dolsan Grand Bridge, whereas proposed equations properly reflect the axial-flexural interaction behaviour of girders and towers in cable-stayed bridges.

Development of Rating System for Highway Bridges (도로교 내하급수 판정시스템 개발)

  • Cho, Hyo Nam;Chang, Dong Il;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.9-15
    • /
    • 1991
  • This study is directed for the development of rational rating models for realistic safety assessment and the computer rating system for highway bridges. For this purpose, the conventional rating system is considerably improved in appropriate way, and a rational rating system based on the reliabilty method is proposed to estimate safety of deteriorated bridges by using only the visual inspection data or the statistical data available. In addition. the rating system which can assess the realistic allowable passing tonnage of military vehicles in case of the military operations is also presented. From this study, it is known that the presented rating system and the computer program BRS(Bridge Rating System) provide an effective tool which can handle the degree of deterioration and various uncertainities of the bridge systematically. so it can be used widely for assessment of safety and load carrying capacity of existing deteriorated or damaged bridges.

  • PDF

Developing an Estimation Model for Safety Rating of Road Bridges Using Rule-based Classification Method (규칙 기반 분류 기법을 활용한 도로교량 안전등급 추정 모델 개발)

  • Chung, Sehwan;Lim, Soram;Chi, Seokho
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.

Safety Assessment and Capacity Rating of Existing P.C, Bridges based on Reliability Methods (신뢰성 방법에 기초한 기설 P.C교의 안전도 및 내하력 평가)

  • 조효남;김민영;서종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.45-50
    • /
    • 1990
  • This study develops practical models and methods for the assessment of safety and capacity rating of existing P.C. girder bridges based on the reliability methods. One of the main objectives of the study is to propose a practical but realistic limit state model for safety assessment and LRFR rating criteria, which explicitly incorporates the degree of deterioration and damage as well as actual condition of P.C. girder bridges in terms of the damage factor and the response ratio. The damage factor proposed in the paper is defined as the ratio of the current estimated stiffness to the intact base-line stiffness of a member. Based on the observation and the results of applications to existing bridges, it may be concluded that the proposed methods for the assessment and capacity rating models, which explicitly account for the uncertainties and effects of degree of deterioration or damage, provide more realistic and consistent safety-assessment and capacity rating.

  • PDF

A RELIABILITY-BASED CAPACITY RATING OF EXISTING BRIDGES BY INCORPORATING SYSTEM IDENTIFICATION (동특성 추정 기법과 신뢰성 해법에 의한 기설교량의 내하력 판정 방법)

  • Cho, Hyo-Nam;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.37-43
    • /
    • 1990
  • This paper develops practical models and methods for the assessment of safety and rating of damaged and/or deteriorated bridges by incorporating a system identification technique for the explicit inclusion of the degree of deterioration or damage and of the actual bridge response. And, based on the proposed model, reliability-based rating methods are proposed as LRFR(Load and Resistance Factor Rating) and system reliability-index rating criteria. The proposed limit state model explicitly accounts for the degree of deterioration or damage in terms of the damage and response factors. The damage factor in the paper is proposed as the ratio of the current stiffness to the intact stiffness. Based on the observation and the results of applications to existing bridges, it may be concluded that the proposed rating models, which explicitly account for the uncertainties and the effects of degree of deterioration or damage based on the system identification technique, provide more realistic and consistent safety-assessment and capacity-rating.

  • PDF

Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP

  • Aflatooni, Mehran;Chan, Tommy H.T;Thambiratnam, David P.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.199-211
    • /
    • 2015
  • The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.

Representative Rating of Bridges using Condition Assessment Data (상태평가 결과를 이용한 교량의 대표등급 산정방법)

  • Oh, Byung-Hwan;Kim, Kwang-Soo;Shin, Kyung-Joon;Lee, Sang-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.111-118
    • /
    • 2002
  • Currently, the inspection of bridges is conduced for the parts or elements of a bridges and the results of inspection are depicted for those local elements. Therefore, the representative rating of a bridge as a whole bridge system is not presented. The purpose of the present study is to purpose a reasonable method which can yield realistic representative rating for an actual bridge. The purpose method consists of two steps, i.e, visual inspection step and safety assessment step. The importance of members is considered by introducing the weighting factors and the number of spans is also considered to obtain the representative rating of a whole bridge system. The purpose method may be efficiently used to calculate the realistic representative rating bridge structures.

Load-Carrying Capacity Assessment of Deteriorated Rural Bridge

  • Kim, Han-Joong;Kim, Jong-Ok;Yang, Seung-Ie
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.36-45
    • /
    • 2002
  • Most of rural bridges have passed 30 years of age since they were built, which have to support unexpected overload caused by changed design load and excessive amount of transportation. For these rural bridges, repairs and replacements are needed. Even though there have been attempt to estimate the safety of existing bridges deteriorated with major defects, those approaches must rely on the observable damage and subsequent decisions are made subjectively. To avoid the high cost of rehabilitation, the bridge rating must correctly represent the present load-carrying capacity. Rating engineers use a methods such as Allowable Stress Design (ASD), Load Factor Design (LFD), and Load Resistance Factor Design (LRFD) to evaluate the bridge load carrying capacity. In this paper, the load rating methods are introduced, and it is illustrated how to use the load test data from literature survey. Load test is conducted to the bridge that was built 30 years ago in rural area. From load test results, new maintenance method is suggested instead of the bridge replacement.