• Title/Summary/Keyword: rate of strain

Search Result 3,162, Processing Time 0.027 seconds

Dynamic Analysis of 3 Point Bend Specimens under High Loading Rates

  • Han, Moon-Sik;Cho, Jae-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.84-93
    • /
    • 2000
  • Computer simulations of the mechanical behavior of 3 point bend specimens with a quarter notch under impact load are performed. This validity is found to be identified by the experimental proof. The cases with various loading rates applied at the side of the specimen are considered. An elastoplastic von Mises material model is chosen. Gap opening displacement, reaction force, crack tip opening displacement and strain rate are also compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study. These differences of the cases with various loading rates are also investigated.

  • PDF

An Experimental Study on the Dynamic Increase Factor and Strain Rate Dependency of the Tensile Strength of Rock Materials (암석재료 인장강도의 동적 증가계수 및 변형률 속도 의존성에 대한 실험적 연구)

  • Oh, Se-Wook;Choi, Byung-Hee;Min, Gyeong-Jo;Jung, Yong-Bok;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.

Differences on Tension, Compression JC Constitutive Equation Parameter of Strain Rate Effect for Ti-6Al-4V (Ti-6Al-4V 변형률 속도 변화에 따른 인장, 압축형 JC 구성방정식 변수의 변화)

  • Woo, Sang-Hyun;Lee, Chang-Soo;Park, Lee-Ju
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • This paper is concerned with a test method that can be used to investigate the parameters of the Johnson-Cook constitutive model. These parameters are essential for accurately analyzing material behavior under impact loading conditions in numerical simulation. Ti-6Al-4V alloy (HCP crytal structure) was used as a specimen for the experiments. In the $10^{-3}-10^3/s$ strain rate range, three types of experimental methods (convention, compression and tension) were employed to compare the differences using MTS-810, SHPB and SHTB. Finite element analysis results when applying these parameters were displayed along with the experiment results.

Antibiotic Resistance in Staphylococcus aureus Isolated in Busan (부산에서 분리된 황색포도상구균의 항생제 내성 양상)

  • Lee, Jae-Yoon;Park, Jung-Hee;Moon, Kyung-Ho
    • YAKHAK HOEJI
    • /
    • v.51 no.3
    • /
    • pp.164-168
    • /
    • 2007
  • Antibiotic resistance patterns of 21 antibiotics were studied for 50 strains of Staphylococcus aureus isolated from a hospital in Busan from July 2005 to December 2006. All strains showed antibiotic resistance to more than one antibiotic and 3 strains showed resistance to 17 different antibiotics. The strains isolated between 2005 and 2006 had lower resistance rate to 12 antibiotics (other than vancomycin and ampicilin) than the strains isolated between 1989 and 1990. In particular, no chlorarmphenicol resistant strain was found in this study which is contrasted with 34.8% resistant rate obtained in the study conducted between 1989 and 1990. In respect of vancomycin, no resistant strain was found in this study which is the same result obtained in the 1989 to 1990 study; All strains investigated in this study showed 100% resistance rate to ampicillin compared to 69.6% in the previous study.

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

Degradation of Salicylic Acid by Free and Immobilized Cells of Pseudomonas sp. Strain NGK1

  • Patil, Neelakanteshwar-K.;Sharanagouda, U.;Niazi, Javed-H.;Kim, Chi-Kyung;Karegoudar, Timmanagouda-B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing salicylate was immobilized in alginate and polyurethane foam (PUF). The degradation rate of salicylate by freely suspended cells was compared with the degradation rate by immobilized cells. In an initial 20 and 40 mM salicylate, free cells ($2{\times}10^{11}\;cfu\;ml^{-1}$) degraded to 16 and 14 mM, alginate-entrapped cells degraded to 18 and 26 mM, and PUF-entrapped cells degraded to 20 and 32 mM salicylate, respectively, in batch cultures. The alginate-and PUF-entrapped cells were used in repeated batch and continuous culture systems. The efficiency of both the immobilized systems f3r the degradation of salicylate was compared. It has been observed that the PUF-entrapped cells could be reused for more than 20 cycles whereas alginate-entrapped cells could be reused for a maximum of only 12 cycles, after which a decrease in degradation rat was observed with the initial 20 and 40 mM salicylate. The continuous degradation of sallcylate by freely suspended cells showed a negligible degradation rate of salicylate when compared with immobilized cells. With the immobilized cells in both alginate and polyurethane foam, the degradation rate increased with an increase in the dilution rate up to $2\;h^{-1}$ for 20 mM, and $1.5\;h^{-1}$ for 40 mM salicylate. The results revealed that PUF-entrapped cells were more efficient for the degradation of salicylate than alginate-entrapped cells and freely suspended cells.

Metabolic Flux Distribution for $\gamma$-Linolenic Acid Synthetic Pathways in Spirulina platensis

  • Meechai Asawin;Pongakarakun Siriluk;Deshnium Patcharaporn;Cheevadhanarak Supapon;Bhumiratana Sakarindr
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.506-513
    • /
    • 2004
  • Spirulina produces $\gamma$-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of two Spiru/ina strains, wild type BP and a high­GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis of S. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass syn­thesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes - the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate - were measured and the remaining fluxes were calculated using lin­ear optimization. The calculation showed that the flux through the reaction converting acetyl­CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild­type strain. This finding implies that this reaction is rate controlling. This suggestion was sup­ported by experiments, in which the stimulating factors for this reaction $(NADPH\;and\;MgCl_{2})$ were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

An Improved Analytical Model for Considering Strain Rate Effects on Reinforced Concrete Element Behavior (변형률 속도를 고려한 철근콘크리트부재 거동 예측을 위한 개선된 해석모델)

  • Sim, Jong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 1989
  • The strain rate-sensitive constitutive models of steel and concrete were incorporated into a refined analytical procedure for loading rate-dependent axial/flexural analysis of reinforced concrete beam-columns. The predictions of the analytical technique compared well with both quasi-static and dynamic test results on reinforced concrete elements.

  • PDF

Flame Structure of Moderate Turbulent Combustion in Opposed Impinging Jet Combustor (대항분출 연소기의 난류화염 구조)

  • Cho, Yong-Jin;Yoon, Young-Bin;Lee, Chang-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.46-51
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion.

  • PDF

Monitoring of bridge overlay using shrinkage-modified high performance concrete based on strain and moisture evolution

  • Yifeng Ling;Gilson Lomboy;Zhi Ge;Kejin Wang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2023
  • High performance concrete (HPC) has been extensively used in thin overlay for repair purpose due to its excellent strength and durability. This paper presents an experiment, where the sensor-instrumented HPC overlays have been followed by dynamic strain and moisture content monitoring for 1 year, under normal traffic. The vibrating wire and soil moisture sensors were embedded in overlay before construction. Four given HPC mixes (2 original mixes and their shrinkage-modified mixes) were used for overlays to contrast the strain and moisture results. A calibration method to accurately measure the moisture content for a given concrete mixture using soil moisture sensor was established. The monitoring results indicated that the modified mixes performed much better than the original mixes in shrinkage cracking control. Weather condition and concrete maturity at early age greatly affected the strain in concrete. The strain in HPC overlay was primarily in longitudinal direction, leading to transverse cracks. Additionally, the most moisture loss in concrete occurred at early age. Its rate was very dependent on weather. After one year, cracking survey was carried out by vision to verify the strain direction and no cracks observed in shrinkage modified mixes.