• Title/Summary/Keyword: rate of strain

Search Result 3,162, Processing Time 0.031 seconds

Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.381-396
    • /
    • 2020
  • Analytical investigation of the fracture of inhomogeneous beam with two parallel lengthwise cracks is performed. The thickness of the beam varies continuously along the beam length. The beam is loaded in three-point bending. Two beam configurations with different lengths of the cracks are analyzed. The two cracks are located arbitrary along the thickness of the beam. Solutions to the strain energy release rate are derived assuming that the material has non-linear elastic mechanical behavior. Besides, the beam exhibits continuous material inhomogeneity along its thickness. The balance of the energy is analyzed in order to derive the strain energy release rate. Verifications of the solutions are carried-out by considering the complementary strain energy stored in the beam configurations. The influence of the continuous variation of the thickness along the beam length on the lengthwise fracture behavior is investigated. The dependence of the lengthwise fracture on the lengths of the two parallel cracks is also studied.

Evaluation of Shear Strength of a Miniature Lead-free Single Solder Ball Joint (초소형 무연 단일 솔더볼 연결부의 전단강도 평가)

  • Joo, Se-Min;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.14-21
    • /
    • 2010
  • A miniature single solder ball joint is designed to mimic the actual solder joints used in the micro-electric industries. Shear tests were conducted to evaluate the mechanical behavior of miniature single solder joints at intermediate strain rates from $0.019\;s^{-1}$ to $2.16\;s^{-1}$ at room temperature. The shear fracture strength of the present solder ball joints generally increased with increasing shear strain rate, ranging from 32 to 51MPa. This behavior is affected by the sensitivity of bulk solder strength to strain rate. Shear fracture mode changed from brittle to partial ductile (failure inside the bulk solder) with an increase of shear speed. The unloading shear fracture toughness is generally consistent with the measure of the amount of bulk solder on the fractured surface.

A Study on Martensite Transformation of Fe-Ni Alloy Nanoparticles (Fe-Ni 합금 나노 분말의 마르텐사이트 변태에 관한 연구)

  • Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.491-496
    • /
    • 2003
  • Fe-Ni alloy nanoparticles were prepared by ERC (Evaporation and Rapid Condensation) method, and the crystal structure and the behavior of martensite for the nanosized alloy particles were investigated by X-ray diffraction analysis. The relation between the rate of martensite transformation and the internal strain of austenite was discussed. The lattice spaces of austenite and martensite for the nanoparticles agreed with those of the bulk materials. The rate of martensite transformation from austenite and the internal strain of austenite was reduced with decreasing the average size of Fe-Ni nanoparticles. It was thought that the residual austenite in the Ni content range of 11∼l5at% was caused by the internal strain, and the residual martensite in the Ni content range of 32∼36at% had its origin in the high surface energy of nanoparticles.

Development of Textures and Microstructures during Compression in a Hot-Extruded AZ31 Mg Alloy (고온압출한 AZ 31 마그네슘 합금의 압축변형 중 집합조직과 미세조직의 발달)

  • Jung, Byung Jo;Lee, Myung Jae;Park, Yong-Bum
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The development of textures and microstructures during plastic deformation in a hot-extruded AZ 31 Mg alloy was investigated using a compression test with such parameters as deformation temperature, strain rate. It was observed from true stress-strain curves that twinning involves changes of the flow stresses. In the early stages of deformation at temperatures lower than $200^{\circ}C$, the occurrence of twins resulted in a decrease of the work-hardening rate, which increased drastically at a true strain of -0.05. The evolution of the deformation textures were assessed with the aid of EBSD analyses in terms of the competition between twinning and slip activity.

Effect of Polyphosphates on the Growthof Listeria monocytogenes Scott A (인산염이 Listeria monocytogenes Scott A 성장에 미치는 영향)

  • 장덕화;송재영;김일환
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.205-211
    • /
    • 1995
  • To investigate the antimicrobial effect of polyphosphates as a food additive, the growth and structural change of Listeria monocytogentes Scott A were examined in relation to polyphosphates concentration and incubation temperature. Up to 10,000 ppm of polyphosphates, the growth rate of strain was gradually inhibited with increasing polyphosphates concentration and decreasting the incubation temperature. Minimal inhibitory concentration of polyphosphates to the growth of strain was about 12,000 ppm. It was observed , using both scanning electron microscopy(SEM) and transmission electron microscopy(TEM), that 0.9% polyphosphates treatment was resulted in the destruction of cell wall and outflow of cell ingredients. The antimicrobial effects of polyphosphates were more effective than those of dehydroacetate and potassium sorbate at 13$^{\circ}C$ and 4$^{\circ}C$. The growth rate the strain in beef was significantly inhibited by the treatment of 0.9% polyphosphates and storaged at cooling temperature.

  • PDF

Study on the compensation of shape error using Shrinkage rate of resin in Rapid Prototyping (쾌속조형시 레진의 수축률을 고려한 형상오차보정에 관한 연구)

  • 이지용;김태호;박재덕;박정보;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.351-355
    • /
    • 2003
  • Recently, the Rapid Prototyping System makes used of changing file format. The most problem is produced by this process. It is influenced by the precision of shape manufacturing. And It is most influenced by shrinkage rate within many elements influence the precision of 3D shape manufacturing. In result, the length strain in each axis cause at STL file transforming. It will compensate for utilizing the shrinkage rate.

  • PDF

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

Biomechanical adaptation of orthodontic tooth movement (임상가를 위한 특집 2 - 교정력에 의한 치아이동과 Biomechanical adaptation)

  • Lee, Syng-Ill
    • The Journal of the Korean dental association
    • /
    • v.51 no.3
    • /
    • pp.138-147
    • /
    • 2013
  • Orthodontic tooth movement is a unique process which tooth, solid material is moving into hard tissue, bone. Orthodontic force in general provides the strain to the PDL and alveolar bone, which in turn generates the interstitial fluid flow(in detail, fluid flow in PDL and canaliculi). As a results of matrix strain, periodontal ligament cells and bone cells are deformed, releasing variety of cytokines, chemokines, and growth factors. These molecules lead to the orthodontic tooth movement(OTM). In these inflammation and tissue remodeling sites, all of the cells could closely communicate with one another, flowing the information for tissue remodeling. To accelerate the rate of OTM in future, local injection of single growth factor(GF) or a combination of multiple GFs in the periodontal tissues might intervene to stimulate the rate of OTM. Corticotomy is effective and safe to accelerate OTM.

The Effect of Test Peace Size on Liquid Segregation in deformation Behavior in Mushy state Material (고액공존재료의 변형거동에서 재료의 크기가 액상편석에 미치는 영향)

  • 윤성원;서판기;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.167-170
    • /
    • 1997
  • For the optimal net shape forging of semi-solid materials (SSM), it is important to predict the deformation for variation of strain rate. It should be necessruy to conduct a formation of stress-strain curve in semi-solid alloys for analysis of the thixoforming process. Particularly, important problem to application of computer aided engineering in SSM processing is to prevent a segregation of liquid component during compression process. The liquid segregation is studied as multistage change of the strain rate and test piece size to prevent the liquid segregation during the compression process. The compression test for semi-solid aluminium alloy with a controlled solid fraction is performed by dynamic material test system with a furnace. Moreover morphology of structure and fraction of pore are investigated through compression test.

  • PDF

Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening

  • Marzec, Ireneusz;Tejchman, Jacek;Winnicki, Andrzej
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.515-545
    • /
    • 2015
  • The paper presents results of FE simulations of the strain-rate sensitive concrete behaviour under dynamic loading at the macroscopic level. To take the loading velocity effect into account, viscosity, stress modifications and inertial effects were included into a rate-independent elasto-plastic formulation. In addition, a decrease of the material stiffness was considered for a very high loading velocity to simulate fragmentation. In order to ensure the mesh-independence and to properly reproduce strain localization in the entire range of loading velocities, a constitutive formulation was enhanced by a characteristic length of micro-structure using a non-local theory. Numerical results were compared with corresponding laboratory tests and available analytical formulae.