• Title/Summary/Keyword: rate of strain

Search Result 3,162, Processing Time 0.032 seconds

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Chemical Changes of Fruit-Vegetable Juice during Mixed Culture Fermentation of Lactic Acid Bacteria Isolated from Kimchi and Yeast (김치 젖산균과 효모의 혼합배양 방법에 의한 과채류즙 발효과정중의 주요 성분변화)

  • 최홍식;김현영;여경목;김복남
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1065-1070
    • /
    • 1998
  • Lactic acid bacteria KL 1, KD 6, KL 4 strains isolated from kimchi, or obtained Lactobacillus acidophilus, Lactobacillus plantarum, Leuconostoc mesenteroides with and without yeast(Saccharomyces cerevisiae) were inoculated in fruit vegetable juice for mixed culture fermentation 3 days at 3$0^{\circ}C$, and then their chemical changes were studied during fermentation. The amount of organic acid produced by the mixed culture fermentation of KL 1 and yeast was 0.82%(3 days) or 0.58%(1 day) and with the final pH of 3.3(3 days) or 4.2(1 day). These mixed culture systems of isolated strains or other bacterial strains had almost similar results of growth rate and acid production. The contents of vitamin C and carotene were retained and stabilized as 70~80% level of their initial values after 24 hrs fermentation. And also ethanol was produced as of the range in 9.6mg%(W/V) by the mixed culture fermentation of KL 1 and yeast, however, the content of ethanol in single culture fermentation by KL 1 strain was much lower than that of mixed culture. The major components of organic acids in fermented juice by mixed culture were considered as malic(26.0%), lactic(49.9%), succinic and citric acid, whereas these of unfermented juice were malic(53.2%), citric and other acids. On other hand, reducing sugar was decreased from 18.3mg/ml in fresh juice to about 12mg/ml in juice by mixed culture fermentation. Concentrations of fructose, glucose and sucrose were also greatly reduced in fermented juice.

  • PDF

Development and evaluation of protective capacity of Salmonella Enteritidis polyphosphate kinase-deleted and temperature-sensitive mutant (Salmonella enterica serovars Enteritidis의 온도감수성 변이주 및 폴리인산키나아제 변이주의 제작과 방어효과)

  • Kim, Kiju;Park, Soyeon;Cho, Youngjae;Kwak, Jeong-Yeon;Kang, Zheng-Wu;Kim, Eun-Hee;Choi, Hwan-Won;Won, Ho-Keun;Noh, Yun-Hee;Hahn, Tae-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • This study was focusing on evaluating the protection of polyphosphate kinase (ppk) deleted and/or temperature-sensitive (ts) Salmonella Enteritidis (SE) as an attenuated vaccine in chickens. We constructed SEppk, SEts and SEppk::ts mutants and screened those mutants by growth capability in vitro, protection study in mice model and antibody response in chickens. Among the mutants, SEppk::ts-3 was selected because it showed higher growth capability, good protection against highly virulent SE in mice model, and good antibody response in chickens. SEppk::ts-3 also showed good protection against highly virulent SE isolate because it decreased colonization of virulent SE challenge strain in spleen, liver and cecum compared with the non-vaccinated control. The SEppk::ts-3 mutant showed cross-protection against S. Gallinarum (SG) challenge although the its cross-protection rate was a little lower than that of SG9R, a commercial vaccine against SG infection. To use for live attenuated vaccine in chickens, it should further be characterized.

Construction of a Biofilter Immobilized with Rhodococcus sp. B261 for Removal of H2S Gas Generated by Livestock

  • Yun, Soon-Il
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.307-314
    • /
    • 2008
  • To explore the optimal conditions for the removal of $H_{2}S$ gas by biofiltration, various conditions, including inlet $H_{2}S$ concentration, flow rate, moisture, and cell number, were examined. Heterotrophic bacteria were isolated from the compost of the animal excreta. A strain that effectively removed $H_{2}S$ was selected and identified as Rhodococcus rhodochrous B261 by analysis of its 16S rDNA sequence. A cell number of $10^{7}\;cfu/g^{-}compost$ was sufficient to dominate the microbiota, and an effective removal was observed at $H_{2}S$ gas concentrations below 220 mg/L. The moisture content of 33-38% was suitable for activation of the microbial activity and delaying the desiccation. Higher flow rates resulted in lower removal rates of the $H_{2}S$ gas. Under the conditions of $10^7\;cfu/g^{-}compost$, $H_{2}S$ gas concentrations of 220 mg/L, and moisture content of 33-38%, the inlet $H_{2}S$ gas concentrations of 120 and 400 mg/L were completely removed for 34 and 12 days, respectively. The amount of sulfur removed was $2.99{\times}10^{-9}H_{2}S-S/cell$, which was suggested as the amount of sulfur removed by a single cell. The biofilter consisting of the compost and R. rhodochrous B261 could be suitable for a long-term biofilteration for the removal of $H_{2}S$ and other malodorous compounds.

Isolation, Identification, and Characterization of Aero-Adaptive Campylobacter jejuni

  • LEE YOUNG-DUCK;MOON BO-YOUN;CHOI JUNG-PIL;CHANG HAK-GIL;NOH BONG-SOO;PARK JONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.992-1000
    • /
    • 2005
  • Campylobacter is one of the emerging foodborne pathogens, and its worldwide incidence rate is extremely high. This study was undertaken to isolate and identify Campylobacter strains from chicken carcasses in the local markets, and analyze their characteristics regarding oxygen tolerance. They were isolated after aerobic enrichment and identified by biochemical, physiological, and morphological characteristics, PCR, and 16S rDNA sequencing. Their oxygen tolerances were analyzed in terms of the cell surface hydrophobicity, cell fatty acid composition, and oxidoreductase. Five strains of C. jejuni were isolated and identified from 61 isolates from 50 chickens. Among them, C. jejuni IC21 grew well in Brucella broth and commercial milk under aerobic condition. However, in the aerobic exposure, the cell surface hydrophobicity of C. jejuni IC21 was almost the same as the other isolates, even though its morphology changed from the spiral-bacilli form into the coccoid form. Fatty acid analyses showed that all Campylobacter strains had a high composition of $C_{19:1}$, cyclopropane fatty acid, and that the amount of the other fatty acids were very similar between them. Interestingly, however, only oxidoreductase activities of C. jejuni IC21 increased highly under aerobic exposure even though its activities were almost the same as the other C. jejuni strains just after microaerobic culture. It had 11.8 times higher catalase activity, 4.4 times higher for SOD, and 2.0 times higher for NADH oxidase activities. Therefore, in the case of the aero-adaptive C. jejuni IC21, expression of oxidoreductase significantly increased under oxidative stressed condition, which might allow it to survive for a longer time and grow on food under aerobic exposure. Such new strain might be one of the explanations for the increase of campylobacteriosis.

Risk Assessment of Escherichia coli Infection from Use of Interactive Waterscape Facilities (수경시설 물놀이에 따른 대장균 감염의 위해도 분석)

  • Zo, Young-Gun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Objectives: With the goal of quantifying the risk of children contracting gastroenteritis while playing at interactive waterscape facilities and evaluating the adequacy of current water quality regulations, risk assessment was performed with Escherichia coli as pathogen. Methods: Abundances of E. coli in the waters of interactive water features in South Korea were acquired from survey reports. A gamma distribution describing the volume of water swallowed by children during swimming activities was adopted. Exposure rate and risk were calculated by Monte Carlo simulation and dose-response models for various pathogenic E. coli. Results: E. coli was detected in 25 out of 40 facilities, with range of ~1,600 CFU/100 ml. The abundance fitted an exponential distribution. Simulated exposures ranged ${\sim}1.9{\times}10^{10}$ CFU, varying greater along E. coli abundance than the volume of water. Risk of children being infected by enterohemorrhagic E. coli was high, with range of ~0.85. When E. coli abundance was <200 CFU/100 ml, which is the current government threshold, the risk decreased to <0.43. Although the guideline successfully reduced the risk of adults being infected by a less virulent E. coli strains (<0.03), the risk for children could not be quantified due to lack of dose-response models for those pathogens for children. Conclusions: Under the current guideline, children are at risk of being infected if water is contaminated with by enterohemorrhagic E. coli. For other E. coli strains, the risk appears to be considerably less. The result warrants need for developing dose-response models for children for each pathogenic E. coli strain.

An Analysis of Compression Wear Designs and Structural Elements (컴프레션웨어의 디자인과 제품구성요소 분석)

  • Lee, Jung Hwa;Jun, Jung Il;Choi, KuengMi
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.421-433
    • /
    • 2014
  • The aim of this study was to provide compression wear manufacture brands with information needed for product development. 8 tops and 7 bottoms from widely recognized compression wear manufacture brands were selected, and their product structural elements were analyzed, too. The results showed that most compression wear designs were applications of cutting lines designed considering muscle movements of the human body. The average number of cutting lines for patterns and designs were 14 for tops and 15 for bottoms. Different colored material was mainly used on the top for areas that require ventilation or high movement during sports for tops, and for areas that require muscle and joint support during sports for bottoms. The functionality of top materials were found to be stretch, muscle support, moisture absorption and high speed drying, warmth and ventilation for tops, in order of frequency, and stretch, muscle support, moisture absorption and high speed drying, and pressure for bottoms, in order of frequency. Tops were cut in the direction of the lengthwise grain, and bottoms were not only cut in the direction of the lengthwise grain, but also in the direction of the crosswise grain and bias for many products. Tops consisted of an average of 13 organically connected panels, and bottoms consisted of an average of 18 organically connected panels, which was analyzed to improve functionality. The average clothing surface area stretch rate was 85.7% for tops and 70.0% for bottoms, indicating that bottoms were designed to have higher strain rates compared to tops.

Quality Characteristics of Mixed Polysaccharide Gels with Various Kiwifruit Contents (키위 첨가량에 따른 다당류 혼합겔의 품질 특성)

  • 윤혜신;오명숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.511-520
    • /
    • 2003
  • This study was carried out to determine the effects of various contents of kiwifruit contents on the quality characteristics of mixed polysaccharide gels made from $\kappa$-carrageenan and locust bean gum. The color value, gelling temperature, melting temperature, break down rate, syneresis, rupture properties, TPA properties and sensory properties of mixed polysaccharide gels with various contents of kiwifruit contents were measured. As the kiwifruit contents was increased, the lightness (L), yellowness (b) and greenness (-a) of the mixed polysaccharide gels increased. There were no differences in the color values of gels during storage. As the kiwifruit content was increased, the gelling and melting temperatures of the mixed polysaccharide gels also increased. The mixed polysaccharide gels with high kiwifruit contents were difficult to melt, and it seemed that the addition of kiwifruit to the mixed polysaccharide gels could improve the thennal stability of the gels. The syneresis of the gel increased with increasing storage time, whereas the addition of kiwifruit to the gel resulted in suppression of syneresis. With regard to the rupture properties, stress, energy and strain, they were all decreased with increasing kiwifruit contents. The TPA properties, adhesiveness, hardness and chewiness increased and cohesiveness decreased with increasing kiwifruit contents. The results showed that the gel became tough and adhesive, and could be easily broken under small deformation, with increasing kiwifruit contents. The sensory evaluation showed that the green color, aroma, sweetness and sourness increased with increasing kiwifruit contents. The texture, adhesiveness, springiness and cohesiveness decreased, and brittleness and hardness increased, with increasing kiwifruit contents. The overall acceptability of the gel with 30% kiwifruit content was the highest. Thus, mixed polysaccharide gels made from kiwifruits could be useful, as the addition of kiwifruit to a mixed polysaccharide gel results in a good aroma, taste and stability, despite a lowering of the textural properties.

Behavior of RC Beams Strengthened with Carbon Fiber SheetsUnder Repeated Loading (단조 반복하중 하의 탄소섬유시트 보강 RC보의 거동에 관한 연구)

  • Park, Jeong Yong;Kim, Seong Do;Cho, Baik Soon;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 2006
  • This study deals with the response of reinforced concrete beams strengthened with carbon fiber sheets. Test beams are subjected to static loading and repeated loading. Based on the static test results of the RC beams strengthened with carbon fiber sheets, repeated loading tests are performed. The variables of repeated loading test are composed of the number of carbon fiber sheets, the existence of U-shaped band at the end for anchoring, and loading rate of repeated loading, etc. Test results show the flexural behavior, the characteristics of strength, the characteristics of ductility, the change of flexural rigidity, and the amount of energy loss of RC beams under monotonic incremental loading and repeated loading. The failure strain of carbon fiber sheets is also estimated under repeated loading. From the experimental results, this work presents a basis of the data needed to analyze and design the static and dynamic flexural response of RC beams strengthened with carbon fiber sheets.

Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

  • Kim, Byeongsoo;Gil, Hyung Bae;Min, Sang-Gi;Lee, Si-Kyung;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from $-20^{\circ}C$ to $-50^{\circ}C$) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from $-0.2^{\circ}C$ (10% gelatin) to $-6.7^{\circ}C$ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above $-40^{\circ}C$. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature ($-50^{\circ}C$) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals.