• Title/Summary/Keyword: rate of strain

Search Result 3,162, Processing Time 0.032 seconds

Flame Structure of Moderately Turbulent Combustion in the Opposed Impinging Jet Combustor (대향분출화염의 분산화학반응 화염구조와 NOx 저감기구)

  • 손민호;조용진;윤영빈;이창진
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1387-1393
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion. As a result, it was found that the highly strained pockets are widely distributed during the combustion in the middle of chamber when the orifice diameter is 5mm. And the corresponding PDF distribution of strain rates she was the smoothly distributed strain .ate within the range of |$\pm$1000| (1/sec) rather than a spike shape about zero point. This is the unique feature observed in the combustion with 5mm orifice diameter. Therefore, it can be concluded that the substantial NOx reduction in opposed impinging combustor is mainly attributed to the strain rate distribution within the range of |$\pm$1000|resulting in the combustion phase shift to moderate turbulent combustion.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

A Consolidation Characteristics of Decomposed Mudstone Soil by Constant Rate of Strain Consolidation (일정변형률 압밀시험에 따른 이암풍화토의 압밀특성)

  • 김영수;김기영;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • The main advantage of incremental loading consolidation test is the simplicity of equipments that can be used. However, it is known that the incremental loading test has several deficiencies including long testing time, non-uniform stress state, high and variable rates of strain, very soft clay and problem of back pressure saturation. Due to these drawbacks, various testing methods including constant rate of strain consolidation test(CRS) were developed. In this paper, CRS consolidation test was performed with three different strain rate. The results were verified by the modified CRS theory of Wissa et al.(1971). And then the results obtained from the CRS consolidation tests were compared with those from incremental loading test and direct permeability test.

  • PDF

Strain Rate Effect on tensile properties of Hooked Steel Fiber and PVA Fiber hybrid reinforced cementitious composites (후크형 강섬유와 PVA섬유를 하이브리드 보강한 시멘트복합체의 인장특성에 미치는 변형속도의 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Baek, Jae-Uk;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.208-209
    • /
    • 2018
  • In this study, the tensile properties of hybrid fiber reinforced cementitious composites under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance performance of hooked steel fiber at strain rate 101/s.

  • PDF

Fiber blending Ratio Effect on Tensile Properties of Hybrid Fiber Reinforced Cement-based Composites under High Strain Rate (고변형속도 조건에서 섬유 혼합비가 하이브리드 섬유보강 시멘트복합체의 인장특성에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.147-148
    • /
    • 2017
  • In this study, the tensile properties of mono and hybrid fiber reinforced cement-based composite according to fiber blending ratio under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s.

  • PDF

Effect of Hot Interrupted strain on Static Softening of Single Phase Cu-Zn Alloy (고온단속변형량이 단상 Cu-Zn합금의 정적연화에 미치는 영향)

  • 권용환;조상현;유연철
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.169-179
    • /
    • 1995
  • Static restoration mechanism during hot interrupted deformation of Cu-Zn alloy was studied in the temperature range from $550^{\circ}C$ to $750^{\circ}C$ and at a constant strain rate of 0.1/sec. At a given temperature, the hot interrupted deformations were performed with variation of interrupted time $t_i$ form 1 to 50 sec and of interrupted strain ${\varepsilon}_i$ from 0.15 to 0.90. From the analysis of the values of the critical strain of ${\varepsilon}_c$ for tje initiation of dynamic recrystallization and the peak strain of${\varepsilon}_p$, the relationship ${\varepsilon}_c{\fallingdotseq}0.7{\varepsilon}_p$ was obtained. It was clarified that the softening of the interrupted deformation was mainly the static recrystallization and the fractional softening(FS) which was over 30% mostly confirmed this result. The fractional softening of the interrupted time $t_i$ especially and pre-strain. The FS increased with increasing strain rate, interrupted time and pre-strain. The change of microstructures after hot deformation could be predicted by the FS. when the FS was 30~100%, static recrystallization was happened and grain growth was observed at the condition which was $750^{\circ}C$ deformation temperature, 0.45 prestrain and this condition's FS value was over 100%.

  • PDF

Synthetic Sea Water and Strain Hate Effects on Tensile Properties of E-Glass/Polyester Composites (E-Glass/Polyester 적층복합재료의 인장특성에 미치는 인공해수 및 변형율속도의 영향)

  • Kim, Yeon-Jik;Im, Jae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.133-142
    • /
    • 1992
  • The slow strain-rate test($1{\times}10^{-4}~1{\times}10^{-7}sec^{-1}$) was performed to understand the tensile properties of chopped strand glass mat/polyester composite in air and synthetic sea water. (pH 6.0, 8.2, 10.0) For the tested composite subjected to tensile loading in air and synthetic sea water (ph 6.0, 8.2, 10.0), the tensile properties are a little decreased as strain rate decrease and a little decrease in stiffness is observed in $1{\times}10^{-7}sec^{-1}$. The tensile properties were some changed in case the pH value in synthetic sea water is varied.

  • PDF

Tensile Test Evaluation of Polypropylene Sheets Following as Strain Rate and Temperature Variation (폴리프로필렌의 변형속도 및 온도변화에 따른 판재 인장시험 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.32-36
    • /
    • 2018
  • A tensile test evaluation of a polypropylene plate was carried out using an Instron tester with a capacity of 500 kgf. To evaluate the strain rate sensitivity of the polypropylene plate with a thickness of 0.8 mm, a tensile test was performed at room temperature through strain rate variations from $5{\times}10^{-4}/sec$ to $5{\times}10^{-2}/sec$. From these, the changes in strength due to the strain rate change and temperature change were compared. As a result of the experiment, the strength increased with increasing initial strain rate. Polypropylene was found to be a material with a positive strain rate sensitivity. In addition, the high temperature tensile properties of the polypropylene plate were evaluated using high temperature tensile tests at 80, 120, and $160^{\circ}C$. The strength decreased with increasing temperature. In particular at $160^{\circ}C$, the tensile strength decreased to zero. The increase in yield strength and the tensile strength at room temperature, $80^{\circ}C$ and $120^{\circ}C$ were similar. At $160^{\circ}C$, however, there was almost no increase in strength because the stress approached zero. In the high temperature tensile test, the tensile strength increased more than the increase in yield strength with increasing strain rate.

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.