• 제목/요약/키워드: rate of strain

Search Result 3,162, Processing Time 0.218 seconds

Deformation behavior of the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel under different strain rate conditions (Fe-18Cr-14Mn-4Ni-0.9N 고질소 내식강의 고온 석출과 변형률 속도에 따른 변형특성 연구)

  • Nam, S.M.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.421-424
    • /
    • 2006
  • High nitrogen steels (HNS) exhibit both high strength and ductility during tensile deformation. In the present study the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel was heat treated at $1000^{\circ}C$ and $1100^{\circ}C$ to produce $Cr_2N$ precipitates in austenite matrix and full austenite microstructures, respectively. Tensile tests of the heat treated specimens were performed at two different strain rates of 0.05/sec and 0.00005/sec. Each tensile curve of the specimens could be well characterized by the the modified Ludwik equation. Plastic deformation of the steel was adequately represented by the four parameters of the modified Ludwik equation. At 0.05/s strain rate, the specimen with the $Cr_2N$ precipitate exhibited higher strength than the full austenite specimen, while the full austenite specimen showed better mechanical properties at 0.00005/s strain rate. It was found that the $Cr_2N$ precipitates influences deformation behavior of the high nitrogen steel significantly.

  • PDF

The Characteristic of Swelling Index Evaluated by CRS Consolidation Test (일정변형속도(CRS) 압밀시험에 의한 팽창지수 산정 특성)

  • 한상재;김수삼;김병일;이응준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.311-317
    • /
    • 2003
  • The swelling index of clayey soil was examined by constant rate of strain(CRS) consolidation test. Four kinds of strain rate were applied during unloading. The strain rates are l/l, l/5, 1/10, l/l 5 of loading. The strain rates during loading are 0.05%/min and 0.03%/min. From the test results using standard consolidometer, the swelling indexes were much similar values in case of 1/5 or 1/10 of the strain rate during loading stage. In the relation between effective stress and excess pore water pressure ratio, it was found that the existence of cross point and the stress level can be separated into two zones according to the swelling index.

High strain rate tensile test of sheet metals with a new tension split hopkinson bar (새로운 Tension Split Hopkinson Bar를 이용한 박판의 고속 인장시험)

  • Kang, Woo-Jong;Cho, Sang-Soon;Huh, Hoon;Jung, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2209-2219
    • /
    • 1997
  • A split hopkinson bar could be used for obtaining the high strain rate material properties of sheet metals for an autobody. In high speed tensile tests of sheet matals, a new design of a tension split Hopkinson bar apparatus is needed. The design of grips and an anvil length are numerically analyzed with ABAQUS/Explicit for the new apparatus of split Hopkinson bars. From the experiments with the new apparatus, the material properties of SPCEN in the high strain rate state have been acquired and compared with quasi-static experimental results. The material properties of SPCEN as well as other sheet metals in an autobody are indispensible for the analysis of crashworthness. Nevertheless the experiment of sheet metal in the high strain rate state has not been done or reported.

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.

Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure (비균일 조직에 따른 불균일 변형 해석을 위한 미시역학적 초소성 모텔)

  • Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1933-1943
    • /
    • 2001
  • A micromechanical model is presented for superplasticity in which heterogeneous microstructures are coupled with deformation behavior. The effects of initial distributions of grain size, and their evolutions on the mechanical properties can be predicted by the model. Alternative stress rate models such as Jaumann rate and rotation incremental rate have been employed to analyze uniaxial loading and simple shear problems and the appropriate modeling was studied on the basis of hypoelasticity and elasto-viscoplasticity. The model has been implemented into finite element software so that full process simulation can be carried out. Tests have been conducted on Ti-6Al-4V alloy and the microstructural features such as grain size, distributions of grain size, and volume fraction of each phase were examined for the materials that were tested at different strain rates. The experimentally observed stress-strain behavior on a range of initial grain size distributions has been shown to be correctly predicted. In addition, the effect of volume fraction of the phases and concurrent grain growth were analyzed. The dependence of failure strain on strain rate has been explained in terms of the change in mechanism of grain growth that occurs with changing strain rate.

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

An Investigation of the Extinction and Ignition Characteristics Using a Flame-Controlling Method (화염온도 제어법을 이용한 확산화염의 소화 및 점화특성 검토)

  • Oh, Chang-Bo;Lee, Eui-Ju;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Extinction and ignition characteristics of $CH_4$-air counterflow diffusion flame were numerically investigated using a Flame-Controlling Method(FCM). A skeletal reaction mechanism, which adopts 17 species and 58 reactions, was used in the simulation. The extinction and ignition conditions of the $CH_4$-air diffusion flames were investigated with varying the global strain rate. Upper and middle branches of S-curve for the peak temperature in the inverse of the global strain rate space were obtained with the FCM. The structures of diffusion flames in the upper and middle branches of S-curve were compared. It was found that the global strain rate was not correlated with the local strain rate well in the low global strain rate region. It is expected that the FCM is very useful to obtaining the extinction and ignition condition of diffusion flame, such as fires.

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Global Strain Rate on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 변형률이 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.42-47
    • /
    • 2004
  • The axisymmetric methane-air counterflow flame in microgravity was simulated to investigate effects of the global strain rate on the flame structure. The flame shapes and profiles of temperature and the axial velocity for the mole fraction of methane in the methane-nitrogen fuel stream, Xm= 20, 50, $80\%$, and the global strain rate, ag= 20, 60, 90 $s^{-1}$ each mole fraction were compared. The profiles of the temperature and axial velocity of the axisymmetric simulations were in good agreement with those of OPPDIF, an one-dimensional flamelet code. It was confirmed that the flame is stretched more and the flame radius increases and the flame thickness decreases as the global strain rate increases.

  • PDF

A Numerical Study on Nonlinear Dynamic Behavior of Diffusive-Thermal Instability in Diluted CH4/O2 Conterflow Diffusion Flames (희석된 메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 비선형 동적 거동에 관한 수치해석)

  • Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2004
  • Nonlinear dynamic behavior of diffusive-thermal instability in diluted CH$_4$/O$_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution, which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is net observed in this study, which is attributed to both convective flow and preferential diffusion effects.

Effects of Burner Distance on Flame Characteristics at Low Strain Rate Counterflow Edge Flames (저 신장율 대향류 확산화염에서 화염 특성에 관한 버너 간격 효과)

  • Yun, Jin-Han;Keel, Sang-In;Hwang, Dong-Jin;Choi, Yun-Jin;Ryu, Jung-In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • Experimental study is conducted to identify the existence of a shrinking flame disk and to clarify its flame characteristics through the inspection of critical mole fraction at flame extinction and edge flame oscillation at low strain rate flames. Experiments are made as varying global strain rate, velocity ratio, and burner distance. The transition from a shrinking flame disk to a flame hole is verified through gradient measurements of maximum flame temperature. The evidence of edge flame oscillation in flame disk is also provided through numerical simulation in microgravity. It is found at low strain rate flame disks in normal gravity that buoyancy effects are importantly contributing to lateral heat loss to burner rim, and is proven through critical mole fraction at flame extinction, edge flame oscillation, and measurements of flame temperature gradient along flame disk surface.

  • PDF