• Title/Summary/Keyword: rate of strain

Search Result 3,162, Processing Time 0.036 seconds

Analytical Study of the Effect of Material Properties on the Formability of Sheet Metals based on the M-K Model (M-K 모델 기반의 박판금속 성형성 평가에서 물성의 영향에 대한 해석적 연구)

  • Lou, Y.;Kim, S.B.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.393-398
    • /
    • 2010
  • This paper investigates the effect of material properties on the formability of sheet metals based on the Marciniak-Kuczynski model (M-K model). The hardening behavior of the material is modeled as the Hollomon model with the strain rate effect. The yield surfaces are constructed with Hosford79 yield function. The material properties considered in this study include the R-value, the strain hardening exponent, the strain rate hardening exponent, and the crystal structure of the material. The effect of the crystal structure on formability is roughly expressed as the change of the yield surface by varying the value of the exponent in Hosford79 yield function. Results show that the R-value affects neither the magnitude nor the shape of right hand side of forming limit diagrams (FLDs). Higher strain hardening exponent and higher strain rate hardening exponent improve the formability of sheet metals because they stabilize the forming processes.

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

High Temperature Deformation Characteristics (STS 430 고온변형 특성에 관한 연구)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.179-182
    • /
    • 2000
  • The dynamic softening behavior of type 430 ferritic stainless steel could be characterized by the hot torsion test in the temperature range of 900-110$0^{\circ}C$ and the strain rate range of 0.05-5/sec. It is found that the continuous dynamic recrystallization (CDRX) was a major dynamic softening mechanism. The effects of process variables strain ($\varepsilon$) stain rate($\varepsilon$)and temperature (T) on CDRX could be individually established from the analysis of flow stress curves and microstructure. The effect of CDRX individually established from the analysis of flow stress curves and microstructure. The effect of CDRX increased with increasing strain rate and decreasing temperature in continuous deformation. The multipass deformation processes were performed with 10 pass deformations. The CDRX effect occurred in multipass deformatioon. The grain refinement could be achieved from multipass deformation The grain refinement increased with increasing strain rate and decreasing temperature. Also the CDRX in multipass deformation was affected by interpass time and pass strain. The total strain was to be found key parameter to occur CDRX.

  • PDF

A Study on the Proper Pore pressure ratio in Continuous Loading Consolidation tests (연속재하 압밀시험에서 적정 간극수압비에 관한 연구)

  • Chae, Sum-Sik;Lee, Song
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.271-276
    • /
    • 2002
  • Continuous loading is applied the sample has been developed to overcome some of the problems associated with the incremental loading consolidation test. Therefore, it is able to reduce the test time and provide a well defined the curve of effective stress versus strain due to continuous stress-strain points. Also, the constant rate of strain consolidation(CRSC) test has been accepted widely as a standard method in foreign countries because of its many advantages. However, in Korea the CRSC test has not been used in engineering practice and experimentally verified. Because there is not a precise criterion of testing despite consolidation characteristics are influenced on strain rate and Pore pressure ratio. Consequently, it is difficult to apply in engineering practice. In this study, artificial neural networks are applied to the estimation of th proper strain rate and pore pressure ratio of the CRSC test. This study shows the possibility of utilizing the artificial neural networks model of estimation of the strain rate and pore pressure ratio in the CRSC test.

  • PDF

Dynamic Strain Aging on the Leak-Before-Break Analysis in SA106 Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.193-198
    • /
    • 1996
  • The effect of dynamic strain aging (DSA) on the leak-before-break (LBB) analysis was estimated through the evaluation of leakage-size-crack and flaw stability in SA106 Gr.C piping steel. Also. the results were represented as a form of "LBB allowable load window". In the DSA temperature region. the leakage-size-crack length was smaller than that at other temperatures and it increased with increasing tensile strain rate. In the results of flaw stability analysis. the lowest instability load appeared at the temperature corresponding to minimum J- R curve which was caused by DSA. The instability load near the plant operating temperature depended on the loading rate of J-R data. and decreased with increasing tensile strain rate. These are due to the strain hardening characteristic and strain rate sensitivity of DSA. In the "LBB allowable load window". LBB allowable region was the narrowest at the temperature and loading conditions where DSA occurs.

  • PDF

On the Role of Kinematic Hardening Rules in Predicting Relaxation Behavior (응력이완 거동의 예측에 대한 이동경화법칙의 역할)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2008
  • Numerous experimental investigations on metallic materials and solid polymers have shown that relaxation behavior is nonlinearly dependent on prior strain rate. The stress drops in a constant time interval nonlinearly increase with an increase of prior strain rate. And the relaxed stress associated with the fastest prior strain rate has the smallest stress magnitude at the end of relaxation periods. This paper deals with the performance of three classes of unified constitutive models in predicting the characteristic behaviors of relaxation. The three classes of models are categorized by a rate sensitivity of kinematic hardening rule. The first class uses rate-independent kinematic hardening rule that includes the competing effect of strain hardening and dynamic recovery. In the second class, a stress rate term is incorporated into the rate-independent kinematic hardening rule. The final one uses a rate-dependent format of kinematic hardening rule.

Non-Quadratic Anisotropic Strain Rate Potential Defined in Plane Stress State (평면 응력 조건에서 정의된 비이차 비등방 변형률 속도 포텐셜)

  • Kim, D.;Kim, J.H.;Lee, Y.S.;Barlat, Frederic;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.369-376
    • /
    • 2011
  • A non-quadratic anisotropic strain rate potential was introduced as a conjugate potential of the yield stress potential Yld2000-2d to describe anisotropic behavior of sheet metals, in particular, aluminum alloy sheets under plane stress state. This strain-rate potential takes into account the anisotropic yield stresses and R-values measured along the directions measured at 0, 45 and 90 degrees from the rolling direction, as well as the balanced biaxial yield stress and strain-rate ratio. The convexity of the strain-rate potential was completely proven. The strain-rate potential was applied for two anisotropic aluminum alloy sheets, AA6022-T4 and AA2090-T3. The results verified that the strain rate potential properly described the anisotropic behavior of aluminum alloy sheets and was closely conjugate of Yld2000-2d under the plane stress state.

Characterization of superplastic material SPF8090 Al-Li for the strain-rate and the temperature (변형률속도와 온도에 따른 SPF8090 Al-Li 초소성재료의 물성치 평가)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.89-93
    • /
    • 1997
  • A superlastic material, aluminum - lithium alloy 8090, were examined with uniaxial tensile test to investigate its thermomechanical behavior. The tests were carried out at the strain-rates ranging from 2${\times}$10-4 to 1${\times}$10-2 and at the temperatures from 48 0$^{\circ}C$ to 540$^{\circ}C$. The experiments produced force-displacement curves which converted to stress-strain curves. From the curves, several important superplastic factor such as strain-rate sensitivity, optimum strain-rate and strength coefficient were obtained.

  • PDF

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측)

  • Choi, S.C.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.172-175
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. To solve the nonlinear system of equations derived from the equilibrium and constraints in the groove region and the safe zone, the Newton-Raphson method is used. The theoretical FLDs using four different yield criteria, that are von Mises, Hill (1948), Hill (1979), Logan and Hosford, are compared with the experimental, numerical (FEA) and other theoretical results. A new trial is made where a modified M-K model having n-step grooves is introduced to describe a real localized neck.

  • PDF

Forming Limits Diagram of AZ31 Alloy Sheet with the Deformation Mode (AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구)

  • Jung, J.H.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.473-480
    • /
    • 2008
  • Sheet metal forming of Mg alloy is usually performed at elevated temperature because of the low formability at room temperature. Therefore, strain rates affected with the forming temperature and speed must be considered as important factor about formability. Effects of process parameters such as various temperatures and forming speeds were investigated in circular cup deep drawing. From the experimental results, it is known that LDR (Limit Drawing Ratio) increase as the strain rate increase. On the contrary, the FLD (Forming Limit Diagram) shows lower value as faster strain rate. Therefore, anisotropy values are investigated according to the temperature and strain rates at each forming temperature. R-values also represent higher value as faster strain rate. It is known that the formability can be different with the deformation mode on warm forming of AZ31 alloy sheet.