• Title/Summary/Keyword: rate dependent

Search Result 3,171, Processing Time 0.031 seconds

In Vitro Magnetometry, LDH Activity and Apoptosisas Indices of Cytotoxicity in Alveolar Macrophages Exposed to Cadmium Chloride (카드뮴에 폭로된 폐포된 폐포대식세포의 세포독성 평가를 위한 세포자계측정, LDH활성도 및 Apoptosis)

  • 조영채
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.115-121
    • /
    • 2000
  • To evaluate the cytotoxicity of cadmium compounds, this study was conducted to measure the in vitro magnetometry, LDH release and cellular apoptosis using alveolar macrophages of hamsters. A series of magnetometric measurements in cadmium-added groups showed a significant dose-dependent decay of the relaxation curves. The LDH release rates showed a dose-dependently increasing tendency as the dose gradually increased. The positive rates of apoptosis were significantly higher in cadmium-added groups than the control groups. Conclusively, the cytotoxicity increased in a dose dependent way as the concentration of cadmium added increased, which reflected in the decay of relaxation curve in magnetometry, and increased LDH release rate and positive rate of apoptosis.

  • PDF

A Study on the Flow Behavior of the Viscoelastic Fluids in the Falling Ball Viscometer (낙구식 점도계를 이용한 점탄성유체의 유동에 관한 연구)

  • 전찬열
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1988
  • The falling ball viscometer has been widely used for measuring the viscosity of the Newtonian fluids because of its simple theory and low cost. The use of the falling ball viscometer for measuring the non-Newtonian viscosity has been of interest to rheologists for some years. The analysis of the experimental results in a falling ball viscometer rest on Stokes law which yields the terminal velocity for a sphere moving through an infinite medium of fluids. An attempt to use the falling ball viscometer to measure the non-Newtonian viscosity in the intermediate shear rate ranEe was sucessfully accomplished by combining the direct experimental obserbations with a simple analytical model for the average shear-stress and shear rate at, the surface of a sphere. In the experiments with highly viscoelastic polyacrylamide solutions the terminal velocity was observed to be dependent on the time interval between the dropping of successive balls. The time-dependent phenomenon was used to determine characteristic diffusion times of the concentrated solutions of polyacrylamide.

  • PDF

The Effect of In-flight Bulk Metallic Glass Particle Temperature on Impact Behavior and Crystallization

  • Kim, Soo-Ki;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.242-243
    • /
    • 2006
  • NiTiZrSiSn bulk metallic glass powder was produced using inert gas atomization and then was sprayed onto a SS 41 mild steel substrate using the kinetic spraying process. Through this study, the effects of thermal energy of in-flight particle and crystallization degree by powder preheating temperature were evaluated. The deformation behavior of bulk metallic glass is very interesting and it is largely dependent on the temperature. The crystalline phase formation at impact interface was dependent on the in-flight particle temperature. In addition, variations in the impact behavior need to be considered at high strain rate and in-flight particle temperature.

  • PDF

Temperature-Dependent Thermal and Chemical Stabilities as well as Mechanical Properties of Electrodeposited Nanocrystalline Ni

  • Zheng, Liangfu;Peng, Xiao
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1293-1302
    • /
    • 2018
  • Nanocrystalline (NC) Ni electrodeposits (EDs) with a mean grain size of $34{\pm}12nm$ has been investigated, from room temperature to $800^{\circ}C$ under a purge gas of argon, by both non-isothermal and isothermal differential scanning calorimetry measurements, in combination with characterization of temperature-dependent microstructural evolution. A significant exothermic peak resulting from superimposition of recrystallization and surface oxidation occurs between 340 and $745^{\circ}C$ at a heating rate of $10^{\circ}C/min$ for the NC Ni EDs. The temperatures for recrystallization and oxidation increase with increasing the heating rate. In addition, recrystallization leads to a profound brittle-ductile transition of the Ni EDs in a narrow range around the peak temperature for the recrystallization.

Location Area Design of a Cellular Network with Time-dependent Mobile flow and Call Arrival Rate (시간에 따른 인구유동/호 발생의 변화를 고려한 이동통신 네트워크의 위치영역 설계)

  • Hong Jung-Sik;Jang Jae-Song;Kim Ji-Pyo;Lie Chang-Hoon;Lee Jin-Seung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.119-135
    • /
    • 2005
  • Design of location erea(LA) in a cellular network is to partition the network into clusters of cells so as to minimize the cost of location updating and paging. Most research works dealing with the LA design problem assume that the call. arrival rate and mobile flow rate are fixed parameters which can be estimated independently. In this aspect, most Problems addressed so far are deterministic LA design problems(DLADP), known to be NP hard. The mobile flow and call arrival rate are, however, varying with time and should be treated simultaneously because the call arrival rate in a cell during a day is influenced by the change of a population size of the cell. This Paper Presents a new model on IA design problems considering the time-dependent call arrival and mobile flow rate. The new model becomes a stochastic LA design problem(SLADP) because It takes into account the possibility of paging waiting and blocking caused by the changing call arrival rate and finite paging capacity. Un order to obtain the optimal solution of the LA design problem, the SIADP is transformed Into the DLADP by introducing the utilization factor of paging channels and the problem is solved iteratively until the required paging quality is satisfied. Finally, an illustrative example reflecting the metropolitan area, Seoul, is provided and the optimal partitions of a cell structure are presented.

Strain-rate-dependent Consolidation Characteristics of Busan Clay (부산점토의 변형률 속도 의존적인 압밀특성)

  • Kim Yun-Tae;Jo Sang-Chan;Jo Gi-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.127-135
    • /
    • 2005
  • In order to analyze effects of strain rate on consolidation characteristics of Busan clay, a series of constant rate of strain (CRS) consolidation tests with different strain rate and incremental loading tests (ILT) were performed. From experimental test results on Busan clay, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurring during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendency to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure was observed after the end of loading without change of total stress on the incremental loading test, which phenomenon is called Mandel-Cryer effect. It was also found that rapid generation of excess pore pressure took place due to collapse of soil structure as effective stress approached to preconsolidation pressure.

Temperature Field and Cooling Rate of Laser Cladding with Wire Feeding

  • Kim, Jae-Do;Peng, Yun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.851-860
    • /
    • 2000
  • Temperature field and cooling rate are important parameters to influence the properties of clad layer and the heat affected zone. In this paper the temperature field and cooling rate of laser cladding are studied by a two-dimensional time-dependent finite element model. Experiment has been carried out by Nd:YAG laser cladding with wire feeding. Research results indicate that at the beginning of cladding, the width and depth of melt pool increase with cladding time. The cooling rate is related to position, cladding time, cladding speed, and preheating temperature. The temperature near melt pool changes rapidly while the temperature far from melt pool changes slowly. With the increase of cladding time, cooling rate decreases. The further the distance from the melt pool, the lower the temperature and the slower the cooling rate. The faster the cladding speed, the faster the cooling rate. The higher the preheating temperature, the slower the cooling rate. The FEM results coincide well with the experiment results.

  • PDF

The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet (변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구)

  • Kim, D.O.;Kang, C.W.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

Fire Characteristics of Composites for Interior Panels Using Cone calorimeter (콘칼로리미터를 이용한 내장판용 복합재료의 화재특성)

  • 이철규;정우성;이덕희
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Composite materials were used widely due to merit of light weight, low maintenance cost and easy installation. But it is the cause of enormous casualties to men and properties because of weak about the fire. Particularly, it is more serious in case of subway train installed composite materials. For this reason, experimental comparison has been done fur measuring heat release rate(H.R.R) and smoke production rate(S.P.R) of interior panels of electric motor car using cone calorimeter. A high radiative heat flux of 50kW/㎡ was used to bum out all materials and to simulate the condition of fully developed fire case in the tests. It was observed that Heat Release Rate and Smoke Production Rate curves were dependent on the kinds of the interior materials. From the heat release rate curves, the sustained ignition time, peak heat release rate and total heat release rate were deduced, These data are useful in classifying the materials by calculating two parameters describing the possibility to flashover.

Frequency-dependent grounding impedance of the counterpoise based on the dispersed currents

  • Choi, Jong-Hyuk;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.589-595
    • /
    • 2012
  • When surges and electromagnetic pulses from lightning or power conversion devices are considered, it is desirable to evaluate grounding system performance as grounding impedance. In the case of large-sized grounding electrodes or long counterpoises, the grounding impedance is increased with increasing the frequency of injected current. The grounding impedance is increased by the inductance of grounding electrodes. This paper presents the measured results of frequency-dependent grounding impedance and impedance phase as a function of the length of counterpoises. In order to analyze the frequency-dependent grounding impedance of the counterpoises, the frequency-dependent current dissipation rates were measured and simulated by the distributed parameter circuit model reflecting the frequency-dependent relative resistivity and permittivity of soil. As a result, the ground current dissipation rate is proportional to the soil resistivity near the counterpoises in a low frequency. On the other hand, the ground current dissipation near the injection point is increased as the frequency of injected current increases. Since the high frequency ground current cannot reach the far end of long counterpoise, the grounding impedance of long counterpoise approaches that of the short one in the high frequency. The results obtained from this work could be applied in design of grounding systems.