• Title/Summary/Keyword: rate dependent

Search Result 3,171, Processing Time 0.025 seconds

Analysis of the Strain Rate Effect in Electro-Magnetic Forming (전자기 성형에서의 변형률 속도 효과 해석)

  • 곽신웅;신효철;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1043-1058
    • /
    • 1990
  • The Strain rate effect in electro-magnetic forming, which is one of the high velocity forming methods, is studied by the finite element method in this paper. The forming process is simplified by neglecting the coupling between magnetic field and work-piece deformation, and the impulsive magnetic pressure is regarded as inner pressure load. A rate-dependent elasto-plastic material model, of which tangential modulus depends of effective strain rate, is proposed. The model is shown to well describe the transient increase of yield stresses, the decreases of the final displacement and yield stress, the decrease of the difference in the distribution of deformation along the axial direction, and the change of deformation mechanism due to strain rate effect. As a result, displacement, final deformed shape, radial velocity, deformation energy, and the changes of effective stress, effective strain and effective strain rate through plastic working are given. Based on the results, the effectiveness of this model and the strain rate effect of the deformation process of the work-piece are discussed.

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.

The Effect of Ginseng on $Ca^{++}-dependent$ ATPase Activity of Sarcoplasmic Reticulum Fragments in Rat Heart (백서(白鼠)에 인삼(人蔘) 투여시(投與時) 심근(心筋) 소포체(小胞體)의 $Ca^{++}-dependent$ ATPase활성(活性)에 미치는 효과(效果))

  • Lee, Young-Sook;Kim, Nak-Doo
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.1
    • /
    • pp.24-29
    • /
    • 1984
  • It was previously reported from our laboratory that the rate of deterioration of contractile force was slower in the heart of the ginseng extract treated rats. It was also found that ginseng may have an ability to sustain the normal function of the heart by sustaining Ca accumulation by sarcoplasmic reticulum. $Ca^{++}-dependent$ ATPase plays the central role in movement of $Ca^{++}$ ion from sarcoplasm into sarcoplasmic reticulum. In this investigation, the fragment of sarcoplasmic reticulum was prepared from rat heart treated with ginseng water extract orally 100mg/kg/day for 7 to 10 days and from normal rat heart. $Ca^{++}-dependent$ APTase activity was estimated by a modified method of Fiske and Subbarow's procedure. Experimental groups were divided into 6 groups, depending on the preincubation time, 5, 30 and 60min. at ${25}^{\circ}C$ and ${37}^{\circ}C$ respectively. In both of the groups of ${25}^{\circ}C$ and ${37}^{\circ}C$, $Ca^{++}-dependent$ ATPase activities of the ginseng treated rat hearts were higher than that of normal hearts. Therefore, it can be concluded that $Ca^{++}-dependent$ ATPase activities in sarcoplasmic reticulum of rat hearts were increased by the treatment with ginseng extract.

  • PDF

Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete

  • Shariq, M.;Prasad, J.
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • The paper presents the experimental investigations into the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent tensile strength of concrete. The splitting and flexural tensile strength of concrete was determined at the ages of 3, 7, 28, 56, 90, 150 and 180 days using the cylindrical and prism specimens respectively for plain and GGBFS concrete. The amount of cement replacement by GGBFS was 0%, 40% and 60% on the weight basis. The maximum curing age was kept as 28 days. The results showed that the splitting and flexural tensile strength of concrete containing GGBFS has been found lower than the plain concrete at all ages and for all mixes. The tensile strength of 40 percent replacement has been found higher than the 60 percent at all ages and for all mixes. The rate of gain of splitting and flexural tensile strength of 40 percent GGBFS concrete is found higher than the plain concrete and 60 percent GGBFS concrete at the ages varying from 28 to 180 days. The experimental results of time-dependent tensile strength of concrete are compared with the available models. New models for the prediction of time-dependent splitting and flexural tensile strength of concrete containing GGBFS are proposed. The present experimental and analytical study will be helpful for the designers to know the time-dependent tensile properties of GGBFS concrete to meet the design requirements of liquid retaining reinforced and pre-stressed concrete structures.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

Spin-up in a Cylinder with a Time-Dependent Rotation Rate (시간에 따라 변화는 회전 각속도를 가지는 원통용기내의 스핀업)

  • Kim, Kyung-Seok;Kwak, Ho-Sang;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.456-462
    • /
    • 2001
  • Comprehensive numerical computations are made of a homogenous spin-up in a cylindrical cavity with a time-dependent rotation rate. Numerical solutions are acquired to the governing axisymmetric cylindrical Navier-Stokes equation. A rotation rate formula is ${\Omega}_f={\Omega}_i+{\Delta}{\Omega}(1-{\exp}(-t/t_c))$. If $t_c$ is large, it implies that a rotation change rate is small. The Ekman number, E, is set to $10^{-4}$ and the aspect ratio, R/H, fixed to I. For a linear spin-up(${\epsilon}<<$), the major contributor to spin-up in the interior is not viscous-diffusion term but inviscid term, especially Coriolis term, though $t_c$ is very large. The viscous-diffusion term only works near sidewall. But for spin-up from rest, when $t_c$ is very large, viscous-diffusion term affects interior area as well as sidewall, initially. So azimuthal velocity of interior for large $t_c$ appears faster than that of interior for relatively small $t_c$. However, the viscous-diffusion term of interior decreases as time increases. Instead, inviscid term appears in the interior.

  • PDF

Preformulation Study of Prokidin : Chemical Stability

  • Lee, Yun-Jin;Chun, In-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.88-88
    • /
    • 2001
  • The effects of pH and temperature on the degradation of prokidn in various buffered aqueous solutions(pH 1.32~9.66) and temperatures (35, 45 and 6$0^{\circ}C$ were investigated. The effect of ionic strength on the degradation of prokidin was also measured by varying ionic strength (0.0466~1.5) at pH 1.35 and 45$^{\circ}C$ The effect of metal ions on the degradation of prokidin at pH 7.35 and 3.98 was observed. The degradation of prokidin followed the pseudo- first- order kinetics. The degradation rate of prokidin showed pH-dependent and temperature-dependent patterns. Prokidin was very stable at the pH below 3.95, where half-lives at 35, 45 and 6$0^{\circ}C$were 294, 206 and 107 day, respectively. However, it degraded very rapidly at pH above 6.49; the half-lives at 35, 45 and 6$0^{\circ}C$were 60, 25 and 13 day, respectively. As ionic strength increased, the degradation rate of prokidin increased. Some metal ions increased the degradation rate in the rank order of Mn > Fe > Cu >Fe On the other hand. other metal ions such as Bi, Ba. Zn, Ni, Co did not show unfavorable effect.

  • PDF

A Basic Study of Fuel 2-staging Y-jet Atomizer to Reduce NOx in Liquid Fuel Burner (액체 연료용 버너에서 NOx 저감을 위한 연료2단 분사 Y-jet 노즐에 관한 기초연구)

  • Song, Si-Hong;Lee, Gi-Pung;Kim, Hyeok-Je;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1616-1623
    • /
    • 2001
  • A basic experimental study has been carried out to find out the design parameters of fuel 2-staging atomizers in order to reduce nitrogen oxides(NOx) rate emitted from the steam boilers used the liquid fuel. The heavy fuel oil(B-Coil) and fuel 2-staging Y-jet twin-fluid atomizers were adopted in this study. The results of this paper were obtained from the real as well as the model scale atomizers. In the case of model atomizers test, NOx reduction rate was strongly dependent on the staged fuel rate, but it was weakly dependent on the injection hole arrangement and air swirl conditions. The real scale atomizers was designed and manufactured on the base of these test results, and those was mounted and operated in the real boiler generates 185 ton steam per an hour. The reduction rate of the model and real plant was reached 10∼30% of base NOx by atomizers. but dust was sharply increased in the low O$_2$combustion region of the real plant.

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.