• Title/Summary/Keyword: rate constants

Search Result 1,135, Processing Time 0.025 seconds

Prediction of Concrete Temperature and Its Effects on Continuously Reinforcement Concrete Pavement Behavior at Early Ages (초기재령에서 연속철근콘크리트포장 거동에 콘크리트 온도의 영향과 예측)

  • Kim Dong-Ho;Choi Seong-Cheol;Won Moon-Cheol
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.55-62
    • /
    • 2006
  • Transverse cracks in continuously reinforced concrete pavement (CRCP) occur at early ages due to temperature and moisture variations. The width and spacing of transverse cracks have a significant effect on pavement performance such as load transfer efficiency and punchout development. Also, crack widths in CRCP depend on 'zero-stress temperature,' which is defined as a temperature where initial concrete stresses become zero, as well as drying shrinkage of concrete. For good long-term performance of CRCP, transverse cracks need to be kept tight. To keep the crack widths tight throughout the pavement life, zero-stress temperature must be as low as practically possible. Thus, temperature control at early ages is a key component In ensuring good CRCP performance. In this study, concrete temperatures were predicted using PavePro, a concrete temperature prediction program, for a CRCP construction project, and those values were compared with actual measured temperatures obtained from field testing. The cracks were also surveyed for 12 days after concrete placement. Findings from this study can be summarized as follows. First, the actual maximum temperatures are greater than the predicted maximum temperature in the ranges of 0.2 to 4.5$^{\circ}C$. For accurate temperature predictions, hydration properties of cementitious materials such as activation energy and adiabatic constants, should be evaluated and accurate values be obtained for use as input values. Second, within 24 hours of concrete placement, temperatures of concrete placed in the morning are higher than those placed in the afternoon, and the maximum concrete temperature occurred in the concrete placed at noon. Finally, from the 12 days of condition survey, it was noted that the rate of crack occurrence in the morning placed section was 25 percent greater than that in the afternoon placed section. Based on these findings, it is concluded that maximum concrete temperature has a significant effect on crack development, and boner concrete temperature control is needed to ensure adequate CRCP performance.

  • PDF

Determination of the Shelf-life of Pasteurized Korean Rice Wine, Yakju, in Aseptic Packaging (가열 살균 후 무균 포장한 한국 전통 청주의 저장성에 관한 연구)

  • Lee, Cherl-Ho;Kim, Gi-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • The practical shelf-life of pasteurized Korean rice wine ‘Yakju’, aseptically packed in Tetra-pak, was determined. The test sample products were stored at $4^{\circ}C,\;20^{\circ}C,\;30^{\circ}C\;and\;35^{\circ}C$ for 19 weeks, and the quality assessment was made at two weeks interval. The quality parameters evaluated were pH, acidity, reducing sugar, absorbance at 370 nm, total and acid producing bacteria, yeast and mold, and sensory quality. No meaningful changes of pH and reducing sugar were noticed during the storage for 19 weeks at temperatures tested. The absorbance at 370 nm increased slightly during storage. The total numbers of microorganisms in the product decreased during storage and a drastical reduction of acid producing bacteria was observed after 6 weeks of storage. Both yeast and mold were not found in the pasteurized products. The sensory quality of stored rice-wine was evaluated by triangle test and scoring test. The panels could distinguish the product stored at $4^{\circ}C$ from other products stored at the higher temperatures for over 6 weeks. The overall acceptance of the product decreased gradually during storage, and the rate constants for the changes were $7.93{\times}10^{-3},\;at\;20^{\circ}C,\;9.69{\times}10^{-3}\;at\;30^{\circ}C\;and\;13.4{\times}10^{-3}\;at\;35^{\circ}C$, respectively. The activation energy estimated by Arrhenius equation was 24,795 kJ/kmol. The estimated shelf-life of Yakju pasteurized and aseptically packed was 24 months at $10^{\circ}C$, 16 months at $25^{\circ}C$ and 14 months at $25^{\circ}C$. The shelf-life of Yakju in Seoul was calculated to be 20 months, based on the monthly average temperature of the city.

  • PDF

Stability of Chlorophyll during Processing and Storage of Salted Undaria Pinnatifida (염장(鹽藏)미역의 가공(加工) 및 저장조건(貯藏條件)과 Chlrophyll의 안정성(安定性))

  • Han, Bong-Ho;Bae, Tae-Jin;Kim, Byeong-Sam
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 1984
  • A study on the stability of chlorophyll a in Undaria pinnatifida during blanching, salting and storage was carried out. Raw Undaria pinnatifida was blanched for 25 seconds in the temperature range of 70 to $100^{\circ}C$. To stabilize the chlorophyll a some chemicals such as 1% solutions of $Ca(CH_3CO_2)_2,{\;}Ca(OH)_2,{\;}MgCO_3,{\;}0.5%{\;}Ca(CH_3CO_2)_2$ with $0.5%{\;}MgCO_3$, and reed ash solution were used during/after blanching. The blanched product was salted with table salt after centrifuging for 2 minutes at 1500 rpm, and then again centrifuged after 48 hours for dewatering. The product which was mixed with 8% of table salt was sealed in a polyethylene film bag and stored at 10, 20, 30 and $40^{\circ}C$. The most effective blanching temperature for maximal residual amount of chlorophyll a was $85^{\circ}C$. The quantities of total organic and volatile acids were not significantly changed by the blanching temperature. Blanching in 1% chemical solutions showed bitter results than soaking in 1% chemical solutions for 20 minutes after blanching without chemicals. Reed ash and 0.5% $Ca(CH_3CO_2)_2$ with 0.5% $MgCO_3$ solutions were more effective than the 1% solutions of other chemicals, but the effect was not significant, compared with the group not treated with chemicals. The most reasonable ratio of added salt to dewater the product for 48 hours was 30% in w/w. The amount of total organic and volatile acids revealed no correlation with the amount of added salt. Color and odor of salted product was not severely changed during the storage of 77 days at $10^{\circ}C$. But the changes were accelerated with increasing storage temperatures. The degradation of chlorophyll a in salted product during storage could be interpreted as a first order reaction, and the rate constants at 10, 20, 30 and $40^{\circ}C$ were 0.1289, 0.1028, 0.0770 and 0.0550, respectively. $Q_{10}$ and the activation energy were 1.33 and 5.01 Kcal/g mole.

  • PDF

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

Temperature-dependent Development Model of the Striped Fruit Fly, Bactrocera scutellata (Hendel)(Diptera: Tephritidae) (호박꽃과실파리 온도 발육모형)

  • Jeon, Sung-Wook;Cho, Myoung-Rae;Kim, Yang-Pyo;Lee, Sang-Guei;Kim, So-Hyung;Yu, Jin;Lee, Jong-Jin;Hwang, Chang-Yeon
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The striped fruit fly, Bactrocera scutellata, damages pumpkin and other cucurbitaceous plants. The developmental period of each stage was measured at seven constant temperatures (15, 18, 21, 24, 27, 30, and $33{\pm}1.0^{\circ}C$). The developmental time of eggs ranged from 4.2 days at $15^{\circ}C$ to 0.9 days at $33^{\circ}C$. The developmental period of larvae was 4.2 days at $15^{\circ}C$, and slowed in temperatures above $27^{\circ}C$. The developmental period of pupa was 21.5 days at $15^{\circ}C$ and 7.6 days at $33^{\circ}C$. The mortality of eggs was 17.1% at $15^{\circ}C$ and 22.9% at $33^{\circ}C$, Larval mortalities (1st, 2nd, 3rd) were 24.1, 27.3 and 18.2%, respectively, at $15^{\circ}C$, Pupal mortalities were 18.2% at $15^{\circ}C$ and 23.1% at $33^{\circ}C$. The relationship between developmental rate and temperature fit both a linear model and a nonlinear model. The lower threshold temperatures of eggs, larvae, and pupae were 12.5, 10.7, and $6.3^{\circ}C$, respectively, and threshold temperature of the total immature period was $8.5^{\circ}C$. The thermal constants required to complete the egg, larval, and pupal stages were 33.2, 118.3, and 181.2 DD, respectively. The distribution of each development stages was described by a 3-parameter Weibull function.