• Title/Summary/Keyword: rate capacity effect

Search Result 936, Processing Time 0.029 seconds

A Numerical Study on the effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Choi, Young-Seok;Jeon, Sang-Gyu;Yoon, Joon-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.497-502
    • /
    • 2005
  • In this study. the effect of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate. the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

  • PDF

Effect of Volute Area Distributions on the Performance Characteristic Curve of a Centrifugal Pump (볼류트 단면적 변화가 원심펌프의 성능곡선에 미치는 영향)

  • Kim, Deok-Su;Lee, Kyoung-Young;Yoon, Joon-Yong;Choi, Young-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.558-563
    • /
    • 2005
  • In this paper, the effect of volute area distribution on the performance characteristic curve of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequency required. In order to control the shutoff head of a pump, several volute area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the characteristic curve of a centrifugal pump can be controlled by modifying the area distribution with the same volute outlet area.

  • PDF

Simulation and Experimental Study on an Air-Cooled $NH_3/H_2O$ Absorption Chiller (공랭형 $NH_3/H_2O$ 흡수식 냉동기의 모사 및 실험적 연구)

  • Oh Min Kyu;Kim Hyun Jun;Kim Sung Soo;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1028-1034
    • /
    • 2005
  • The objective of this paper is to study the effects of the cooling air mass flow rate and the heat input variation by the simulation and the experiment. An air-cooled $NH_3/H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect machine is 17.6 kW (5.0 USRT). The overall conductance (UA) of each component, the cooling capacity, coefficient of performance and each state point are measured with the variation of the cooling air mass flow rate and the heat input. It is found that the COP and cooling capacity increase and then decreases with increasing the heat input. It is also found that the COP and the cooling capacity increase and keep constant with increasing the cooling air mass flow rate. The maximum COP is estimated as 0.51 and the optimum cooling air mass flow rate is $217\;m^3/min$ from the present experiment.

Bit Error Reduction for Holographic Data Storage System Using Subclustering (서브클러스터링을 이용한 홀로그래픽 정보저장 시스템의 비트 에러 보정 기법)

  • Kim, Sang-Hoon;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time. Today any data storage system cannot satisfy these conditions, however holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System can be constructed without mechanical actuating part so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this research, to correct errors of binary data stored in holographic data storage system, a new method for reduction errors is suggested. First, find cluster centers using subtractive clustering algorithm then reduce intensities of pixels around cluster centers. By using this error reduction method following results are obtained ; the effect of Inter Pixel Interference noise in the holographic data storage system is decreased and the intensity profile of data page becomes uniform therefore the better data storage system can be constructed.

Experimental Study to Nozzle of Vortex Tube (보텍스튜브의 노즐에 대한 실험적 연구)

  • Riu, K.J.;Bang, C.H.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.1-10
    • /
    • 1999
  • The phenomena of energy separation through the vortex tube was investigated experimentally, to see the effect of nozzle area ratio and partial admission rate on the energy separation and cooling capacity. The experiment was tarried out with various nozzle area ratios from 0.031 to 0.232 and partial admission rate from 0.176 to 0.956 by varying input pressure($0.2{\si\m}0.5$ MPa) and cold air mass fraction($y=0.1{\sim}1.0$). From the experimental result, we found the optimum nozzle area ratio and the effective partial admission rate for the available use and best cooling performance in given operation condition. While the maximum drop of cold air temperature was observed at around y=0.3 and $S_n=0.155$, the maximum cooling capacity was observed at around y=0.6 and $S_n=0.094$.

  • PDF

Spring Length Effect on the Flow Capacity of automatic Flow-Temperature Control Valve (자동 정유량 온도조절밸브의 스프링 길이가 밸브 용량에 미치는 영향)

  • Yoo, Seon-Hak;Kang, Seung-Duk;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.174-177
    • /
    • 2003
  • The automatic temperature control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have simillar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the automatic flow-temperature control valve was developed. The perfromance of this control valve is effected by the catridge shape and spring length. The flow capacity of this control valve is obtained with the different shape of catridges and with change of spring length.

  • PDF

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

Effect of Heat Capacity of Coagulant on Morphology of PVDF-Silica Mixture Through TIPS Process for the Application of Porous Membrane (다공성 분리막으로 응용을 위한 PVDF-실리카 혼합물의 응고액 열용량 변화에 따른 모폴로지 변화)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.458-467
    • /
    • 2017
  • In this study, we prepared PVDF membranes via TIPS for water treatment applications. PVDF was used for its excellent chemical and mechanical properties. The effect of coagulation bath composition, temperature, and heat capacity on the overall membrane morphology was studied and observed using SEM. A mixture of DOP and DBP was used as the diluent, and silica was used as an additive. It was observed that as the heat capacity of the coagulation bath increased, the crystallization rate of PVDF decreased yielding larger pores. Also, as the heat capacity of the coagulation bath decreased, the crystallization rate of PVDF increased yielding smaller pores.

Required Discharge Capacity for Horizontal Drains Installed with Vertical Drains (연직배수공법에서 수평배수층의 소요통수능)

  • 김현태;김상규;공길용
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.59-70
    • /
    • 2002
  • Horizontal drains are sometimes installed on the ground together with vertical drains in order to drain excess pore water. Taking into account the discharge capacity of horizontal drains, a new analytical method is developed in this paper, and then a new formula for the discharge capacity of horizontal drains is proposed. It is known from the analysis that the effect of the rate of surcharge loading is negligible in determining horizontal discharge capacity. This formula is described as the function of coefficient of consolidation, space of vertical drain, compression index, length of horizontal drains, and thickness of the compressible layer.

A Study on Iron Electrode of Ni/Fe Battery(II) (니켈/철 축전지의 철전극에 관한 연구(II))

  • 김운석;박성용;조원일;조병원;윤경석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.300-307
    • /
    • 1993
  • To develop high performance nickel-iron secondary battery, the characteristics of charge-discharge reaction of iron electrode were examined by cyclic voltammetry technique, SEM and XRD analysis. The capacity of the test electrodes was determined by the constant current charge-discharge method. It was found that the temperature and concentration of electrolyte were the major determinant factors of electrode capacity, and especially the 1st discharge capacity was increased with the increase of temperature. The effect of fore forming agent on the electrode capacity was negligible. The electrode capacity was above 350 ㎃h/g(36% utility) at 0.25C discharge rate. The stability of electrode was very good, but the activation occurred slowly.

  • PDF