• Title/Summary/Keyword: rat radiation dose

Search Result 75, Processing Time 0.026 seconds

The apoptotic fragment assay in rat peripheral lymphocytes and crypt cells with whole body irradiation with 60Co ϒ-rays and 50 MeV cyclotron fast neutrons (코발트-60 감마선과 50 MeV 싸이크로트론 고속 중성자선에 전신조사된 랫드의 말초 임파구와 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.203-210
    • /
    • 2001
  • Here, we compared the effectiveness of 50 MeV($p{\to}RBe^+$) cyclotron fast neutrons versus $^{60}Co$ ${\gamma}$-rays by the apoptotic fragment frequency in both rat peripheral lymphocytes and crypt cells to check a radiobiological endpoint. The incidence of apoptotic cell death was increased in all irradiated groups, and radiation at all doses trigger rapid changes in both crypt cells and peripheral lymphocytes. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for these data of apoptotic fragments frequencies was $y=0.3+(6.512{\pm}0.279)D(r^2=0.975)$ after neutrons, while $y=0.3+(4.435{\pm}0.473)D+(-1.300{\pm}0.551)D^2(r^2=0.988)$ after ${\gamma}$-rays. In addition, $y=3.5+(118.410{\pm}10.325)D+(-33.548{\pm}12.023)D^2(r^2=0.992)$ after ${\gamma}$-rays in rat lymphocytes. A significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic cells with increasing dose. Dose-response curves for high and low linear energy transfer (LET) radiation modalities in these studies were different. The relative biological effectiveness (RBE) value for crypt cells was 1.919. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morphological findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis induction in both crypt cells and peripheral lymphocytes could be a useful endpoint of rat model for studying screening test and microdosimetic indicator to evaluate the biological effects of radiation-induced cell damage.

  • PDF

AN EXPERIMENTAL STUDY OF THE RADIATION-INDUCED CHANGES ON THE SECRETORY GRANULES OF THE RAT SUBMANDIVULAR GLAND ACINAR CELL (방사선조사가 악하선세포내 분비과립의 미세구조에 미치는 영향에 관한 실험적 연구)

  • Choi Mi;Lee Kang-Sook;Choi Karp-Shik
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.2
    • /
    • pp.403-410
    • /
    • 1994
  • The purpose of this study was to investigate the irradiation effects on the secretory granules of the rat submandibular gland acinar cell. For this study, Sprague-Dawley strain rats were irradiated to their neck region with the dose of 5Gy and l0Gy by 6MV X-radiation, and sacrificed on the experimental periods after irradiation. The authors observed the ultrastructural changes of the secretory granules of the rat submandibular gland acinar cell under a trasmission electron microscope. The results were as follows: In the transmission electron microscopic examination, secretory granules were blurred in limiting membrane on the 3hours groups after irradiation. And they showed decrease in number, irregularities in shape and distributional pattern, and inhomogeneous internal electron density on the Iday and 3days groups. After then, these changes were recovered in shape and distributional pattern on the 14days groups, and changes of internal electron density and limiting membrane were recovered on the 28days groups after irradiation. Among the intracellular organelles, rough endoplasmic reticulum was scattered, but golgi complex was not changed. And such pathologic changes were earlier and more prominent in 10Gy irradiated groups than in 5Gy irradiated groups.

  • PDF

Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Bae, Hyemi;Choi, Jeongyoon;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.141-150
    • /
    • 2019
  • Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.

AN ELECTRON MICROSCOPIC STUDY ON THE EFFECTS OF IRRADIATION ON THE ACINAR CELLS OF RAT PAROTID GLAND (방사선조사가 백서 이하선의 선세포에 미치는 영향에 관한 전자현미경적 연구)

  • Ko Kwang Jun;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.31-45
    • /
    • 1988
  • The author studied the histopathologic changes according to a single or a split dose and the time after irradiation on the acinar cells of rat parotid gland. 99 Sprague Dawley rats, weighing about l20gm, were divided into control and 3 experimental groups. In experimental groups, GroupⅠ and Ⅱ were delivered a single dose of l5Gy, 18Gy and Group Ⅲ and Ⅳ were delivered two equal split doses of 9Gy, 10.5Gy for a 4 hours interval, respectively. The experimental groups were delivered by a cobalt-60 teletherapy unit with a dose rate of 222cGy/min, source-skin distance of 50㎝, depth of l㎝ and a field size of l2×5㎝. The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and examined by light and electron microscopy. The results were as follows: 1. As the radiation dose increased and the acinar cells delivered a single dose exposure were more damaged, and the change of acinar cells appeared faster than those of a split dose exposure. 2. The histopathologic change of acinar cells appeared at 1 hour after irradiation. The recovery from damaged acinar cells appeared at 1 day after irradiation and there was a tendency that the recovery from damage of a split dose exposure was somewhat later than that of a single dose exposure. 3. Light microscope showed atrophic change of acinar cells and nucleus, degeneration and vesicle formation of cytoplasm, widening of intercellular space and interlobular space. 4. Electron microscope showed loss of nuclear membrane, degeneration of nucleus and nucleoli, clumping of cytoplasm, widening and degeneration of rough endoplasmic reticulum, loss of cristae of mitochondria, lysosome, autophagosome and lipid droplet. 5. Electron microscopically, the change of rough endoplasmic reticulum was the most prominent and this appeared at 1 hour after irradiation as early changes of acinar cells. The nuclear change appeared at 2 hours after irradiation and the loss of cristae of mitochondria was observed at 2 hours after irradiation in all experimental groups.

  • PDF

A STUDY OF THE RADIATION EFFECTS ON THE BASAL CELL OF THE RAT TONGUE EPITHELIUM ACCORDING TO THE EXPOSURE TIMING (방사선 조사시기에 따른 백서 설상피의 기저세포에 미치는 영향에 관한 연구)

  • Na Chun-Hwa;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.343-362
    • /
    • 1995
  • The purpose of this study was to investigate chronic radiation effects on the basal cell of the rat tongue epithelium according to different irradiation timing. Forty-two female rats were devided into 5 experimental groups according to different irradiation timing and were irradiated single dose of 396cGy by MK cell irradiator using Cs-137. Experimental rats were sacrificed at the 2nd week, 4th week and 6th week after birth. The specimens were examined with light microscope and transmission electron microscope. The following results were obtained. 1. The first changes after irraditation were vacuoles. The vacuoles were chiefly observed in the cytoplasm, perinuclei area, and nuclei. 2. The most severe degenerative changes in the basal cell layer were observed in all experimental groups. ; cellular disarrangement, vacuole formation, widening of intercellular space, enlarged mitochondria & rER, and chromatin clumping were seen. 3. The cellular degenerative changes were most severe at the 4th week after birth in all experimental group, and the basal cell hyperplasia was seen at the 6th week in the most of experimental groups 4. The experimental groups 3 and 4 show more severe and more prolonged cellular degeneration than experimental groups 1 and 2, which were irradiated in pregnancy, and experimental group 5, which was irradiated after tongue maturation.

  • PDF

Radiation-induced Apoptosis in Developing Fetal Rat Cerebral Cortex (발육 중의 백서 태아 대뇌 피질에서 방사선에 의한 아포토시스)

  • Chung Woong-Ki;Nam Taek-Kehn;Lee Min-Cheol;Ahn Sung-Ja;Song Ju-Young;Park Seung-Jin;Nah Byung-Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.315-321
    • /
    • 2003
  • Purpose: This study was peformed to Investigate apoptosis by radiation In the developing fetal rat brain. Materials and Methods: Fetal blains were Irradiated In utero between the 17th and 19th days of fetal life (El7-19) by linear accelerator. A dose of Irradiation ranging from 1 Gy to 4 Gy was used to evaluate dose dependency. To test time dependency the ra)s were Irradiated with 2 Gy and then the fetal brain specimens were removed at variable 41me course; 1, 3, 5, 12 and 24 hours after the onset of irradiation. Immunohistochemlcal staining using in situ 707-mediated dUTP nick end labelling (TUNEL) technlfue was used for apoptotic cells. The cerebral cortex, including three zones on coriicai zone (Cf). Intermediate zone (if), and ventricular zone (VZ), was examined. Results : TUNEL positive cells revealed typical features of apoptotic cells under light microscope In the fetal rat cerebral cortex. Apoptotic cells were not found In the cerebral cortex of non-Irradiated fetal rats, but did appear In the entire cerebral cortex after 1 Gy Irradiation, and were more expensive at the ventricular and Intermediate zones than at the cortical zone. The extent of apoptosis was Increased with Increasing doses of radiation. Apoptosis reached the peak at S hours after the onset of 2 Gy Irradiation and persisted until 24 hours. Conclusion: Typical morphological features of apoplosis by irradiation were observed In the developing fetal rat cerebral cortex. It was more extensive at the ventricular and Intermediate zones than at the cortical zone, which suggested that stem cells or early differentiated cells are more radiosensitive than differentiated cells of the cortical zone.

SUMRAY: R and Python Codes for Calculating Cancer Risk Due to Radiation Exposure of a Population

  • Michiya Sasaki;Kyoji Furukawa;Daiki Satoh;Kazumasa Shimada;Shin'ichi Kudo;Shunji Takagi;Shogo Takahara;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.90-99
    • /
    • 2023
  • Background: Quantitative risk assessments should be accompanied by uncertainty analyses of the risk models employed in the calculations. In this study, we aim to develop a computational code named SUMRAY for use in cancer risk projections from radiation exposure taking into account uncertainties. We also aim to make SUMRAY publicly available as a resource for further improvement of risk projection. Materials and Methods: SUMRAY has two versions of code written in R and Python. The risk models used in SUMRAY for all-solid-cancer mortality and incidence were those published in the Life Span Study of a cohort of the atomic bomb survivors in Hiroshima and Nagasaki. The confidence intervals associated with the evaluated risks were derived by propagating the statistical uncertainties in the risk model parameter estimates by the Monte Carlo method. Results and Discussion: SUMRAY was used to calculate the lifetime or time-integrated attributable risks of cancer under an exposure scenario (baseline rates, dose[s], age[s] at exposure, age at the end of follow-up, sex) specified by the user. The results were compared with those calculated using another well-known web-based tool, Radiation Risk Assessment Tool (RadRAT; National Institutes of Health), and showed a reasonable agreement within the estimated confidential interval. Compared with RadRAT, SUMRAY can be used for a wide range of applications, as it allows the risk projection with arbitrarily specified risk models and/or population reference data. Conclusion: The reliabilities of SUMRAY with the present risk-model parameters and their variance-covariance matrices were verified by comparing them with those of the other codes. The SUMRAY code is distributed to the public as an open-source code under the Massachusetts Institute of Technology license.

THE EXPERIMENTAL STUDY ON BONE HEALING AROUND TITANIUM IMPLANTS PLACED IN IRRADIATED RAT'S TIBIAE (방사선 조사 백서 경골에 티타늄 임플랜트 매식후 골 치유에 관한 연구)

  • Kwak, Byung-Hak;Kim, Jong-Ryoul;Park, Bong-Soo;Shin, Sang-Hoon;Sung, Iel-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.6
    • /
    • pp.379-391
    • /
    • 2003
  • The present study was undertaken to evaluate bone regenerative capacity around titanium screw implants placed in irradiated rat's tibiae. At one week after single 15-Gy dose irradiation, miniaturized titanium screw implants were inserted into anterior aspect of the upper tibia of rats weighing 200-250g. Seventy rats were involved: 35 rats were control and 35 rats radiation group. The rats were killed at different intervals as 1, 2, 3, 4, 6, 8, 12 weeks after implantation for histologic observation, histomorphometric analysis and immunohistochemical study with fibronectin and CD34 antibody. 1. Histologically, various stages of bone maturation and ossification can be seen at 4 weeks and regenerated bone close to edges demonstrates more advanced calcification, and network of new bone are well formed at 12 weeks in non-irradiated group. In contrast, active bone formation with increased contact of newly formed bone to implant surface was noted at 4 weeks and a significant amount of new bone formation and bone-implant contact is oberved at 12 weeks in irradiated group. 2. Histomorphometrical analysis confirmed these histologic findings. A significant difference in implant-bone contact and bone density was measured between the control and radiation group. Mean MBD was 62.2% in control group and 27.5% in radiation group, mean MBIC was 86.6% in control group and 47.7% in radiation group, and mean TBIC was 87.3% in control group and 45.6% in radiation group at 12 weeks after implantation. 3. In immunohistochemical study with fibronectin and CD34, radiation reduced hematopoietic progenitor cells severely and disturbed differentiation of osteoblast in bone marrow. The results of this study revealed bone healing capacity around implant after radiation therapy was severely impaired and irradiation reduces the capacity for osseointegration of titanium implants. Many factors including radiation dose, period between radiation and implantation, bone quality, time elapse between first and second surgery, type of prosthetics and hyperbaric oxygen therapy must be considered carefully in postradiation implantation.

Protective Effect of Melatonine Against Radiation Induced Nephrotoxicity in Rats

  • Kucuktulu, Eda;Yavuz, Aydin Ali;Cobanoglu, Umit;Yenilmez, Engin;Eminagaoglu, Selcuk;Karahan, Caner;Topbas, Murat;Kucuktulu, Uzer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4101-4105
    • /
    • 2012
  • Purpose: The degree of radiation injury to kidneys which are located within the limits of radiotherapy area is determined by the volume and the dose of radiation to which the organ is exposed. When the tolerance dose of the kidney is exceeded after a latent period of 6 months acute nephritis develops and after 18 months chronic nephritis ensues. Melatonin is known to prevent the oxidative injury of toxins and radiotherapy with its free radical scavenging capacity. Methods and Materials: In this study 8 weeks old 24 Sprague -Dawley rats were allocated into 4 groups: Control group; Radiotherapy group (20 Gy bilaterally in 5 fractions); Melatonin group (10 mg/kg intraperitoneally), and Melatonin+radiotherapy group (20 Gy Radiotherapy in 5 fractions+ melatonin 10 mg/kg intraperitoneally). After a follow-up period of 6 months BUN was determined in all groups. After rats were euthanized the kidneys were removed for histopathological examination under both light and electron microscopes. Results: After 6 months follow-up, both at light and electron microscopy levels, the rats in radiotherapy+melatonin group were significantly protected against the radiation injury comparing to radiotherapy group (p<0.05). Conclusion: It was shown in this experimental model that melatonin has protective effects against radiation injury to kidneys.

AN ELECTRON MICROSCOPIC STUDY ON THE EFFECTS OF IRRADIATION ON THE BUCCAL MUCOSA OF RAT (방사선조사가 백서 협점막에 미치는 영향에 관한 전자현미경적 연구)

  • Choi Syng Kyu;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.17 no.1
    • /
    • pp.7-20
    • /
    • 1987
  • The author studied the acute reaction of cobalt-60 irradiation to buccal mucosa in rats and difference of the effects of single versus fractionated exposure. 195 Sprague Dowley strain rats, weighing about 120gm, were used in this experiment. 3 rats served as controls and the remaining 192 rats were divided into six groups of 32 rats each. Experimental group Ⅰ, Ⅱ, Ⅲ were received a single dose of 15Gy, 16.5Gy, 18Gy and group Ⅳ, Ⅴ, Ⅵ were received two equal sized fractionated dose of 9Gy, 9.75Gy, 10.5Gy at 4 hour intervals, respectively. The experimental groups were irradiated with cobalt-60 teletherapy unit, Picker model 4M 60 (Field size, 12x5 cm, SSD, 50㎝, Dose rate, 222cGy/min, Depth, 1㎝). The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and the changes of the irradiated buccal mucosa were observed by electron and light microscopy. The results were as follows: 1. A single exposure was more damaging than fractionated exposure, and as the radiation dose increased, the changes of cell organelles became faster, but the healing of radiation-induced damage in fractionated exposure was faster than in single exposure. 2. The radiation-induced changes of the basal cells were the most prominent in 18Gy-single exposure group, and the least in 18Gy-fractionated exposure group. 3. Electron-microscopically, there appeared nuclear changes, swelling of mitochondria and rough endoplasmic reticulum, decrease of free ribosome, presence of vesicles, widening of intercellular space, and loss of basal lamina. The early remarkable changes were partly loss of nuclear membrane and swelling of mitochondria. 4. Light-microscopically, derangement and pyknosis of basal cells, hydropic changes of spinous cells, enlargement of granular cells, indistinctness of basement membrane, and proliferation of epithelium were observed.

  • PDF