• 제목/요약/키워드: rat pheochromocytoma (PC12) cells

검색결과 28건 처리시간 0.029초

Effect of Cynanchum wilfordii Hemeseley Extract on antioxidative enzyme in rat PC 12 pheochromocytoma.

  • Sung, Mi-Kyung;Kwon, Hye-Soon;Lee, Eun-Ju
    • 대한지역사회영양학회:학술대회논문집
    • /
    • 대한지역사회영양학회 2003년도 춘계학술대회 및 비만ㆍ다이어트 박람회
    • /
    • pp.143-143
    • /
    • 2003
  • Reactive oxygen species are highly reactive oxidant molecules and react with cellular components, causing oxidative damages. These damages may play a significant role in the causation of several chronic diseases. Antioxidative defence systems are present in the body to protect cells from oxidative damages. The first line of defence include dietary antioxidants and enzymes such as superoxide dismutase. Cynanchum wilfordii Hemeseley has been used for centuries as a tonic nutraceutical in China and Korea. (omitted)

  • PDF

국내산 참다래 추출물의 신경독성 방어효과 (Neuroprotective Effects of Korean Kiwifruit against t-BHP-induced Cell Damage in PC12 Cells)

  • 김정희;양희경;홍현주;강원영;김동건;김성철;송관정;;한창훈;이영재
    • 한국자원식물학회지
    • /
    • 제23권2호
    • /
    • pp.165-171
    • /
    • 2010
  • 산화적 스트레스로부터 참다래 과실 추출물의 신경세포 보호효과에 미치는 영향을 알아보기 위하여 신경세포주인 PC12 세포를 이용하여 참다래 과실추출물의 전처리가 산화적 손상으로부터 유발되는 신경세포사멸을 억제할 수 있는지 조사하였다. t-BHP에 의해 유도된 신경세포손상으로부터 세포사멸을 억제하여 세포생존도를 증가시켰으며 세포사멸로부터 형성되는 핵의 농축현상과 단편화가 현저히 감소함을 확인 할 수 있었다. 그리고 Bcl-2 단백의 발현 증가, Bax 단백의 발현 감소, caspase-3의 활성, PARP 분해 단백(85KDa)감소, ERK, p38 활성을 감소시켰다. 따라서 참다래 과실의 추출물은 신경세포증식효과를 통해 신경세포손상으로부터 유발되는 다양한 퇴행성 뇌질환의 예방에 도움이 될 것으로 나타났다.

Acute Hypoxia Activates an ENaC-like Channel in Rat Pheochromocytoma (PC12) Cells

  • Bae, Yeon Ju;Yoo, Jae-Cheal;Park, Nammi;Kang, Dawon;Han, Jaehee;Hwang, Eunmi;Park, Jae-Yong;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.57-64
    • /
    • 2013
  • Cells can resist and even recover from stress induced by acute hypoxia, whereas chronic hypoxia often leads to irreversible damage and eventually death. Although little is known about the response(s) to acute hypoxia in neuronal cells, alterations in ion channel activity could be preferential. This study aimed to elucidate which channel type is involved in the response to acute hypoxia in rat pheochromocytomal (PC12) cells as a neuronal cell model. Using perfusing solution saturated with 95% $N_2$ and 5% $CO_2$, induction of cell hypoxia was confirmed based on increased intracellular $Ca^{2+}$ with diminished oxygen content in the perfusate. During acute hypoxia, one channel type with a conductance of about 30 pS (2.5 pA at -80 mV) was activated within the first 2~3 min following onset of hypoxia and was long-lived for more than 300 ms with high open probability ($P_o$, up to 0.8). This channel was permeable to $Na^+$ ions, but not to $K^+$, $Ca^+$, and $Cl^-$ ions, and was sensitively blocked by amiloride (200 nM). These characteristics and behaviors were quite similar to those of epithelial sodium channel (ENaC). RT-PCR and Western blot analyses confirmed that ENaC channel was endogenously expressed in PC12 cells. Taken together, a 30-pS ENaC-like channel was activated in response to acute hypoxia in PC12 cells. This is the first evidence of an acute hypoxia-activated $Na^+$ channel that can contribute to depolarization of the cell.

An In Vitro Bioassay for Nerve Growth Factor

  • Choi, Young-Ju;Kim, Seon-Mi;Park, Sun-Young;Kim, Hyo-Sun;Shin-Won;Lee, Seok-Ho;Sohn, Yeo-Won
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.328.3-329
    • /
    • 2002
  • A convenient bioassay of nerve growth factor(NGF) is essential for assessing its potency during the course of product development and quality controls afterwards. We have set up a cell-based bioassay for determining the potency of recombinant NGF using rat pheochromocytoma (PC12) cells. Cell survival was measured by monitoring the reduction of the alamarBlue$^{TM}$ dye by living cells. (omitted)d)

  • PDF

Effect of Mycelial Extract of Clavicorona pyxidata on Acetylcholinesterase and ${\beta}$-Secretase Activity in vitro

  • Lee, Tae-Hee;Park, Young-Il;Han, Yeong-Hwan
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.502-507
    • /
    • 2006
  • In a previous study, an extract of Clavicorona pyxidata DGUM 29005 mycelia demonstrated an inhibitory effect against enzyme-associated perceptual disorders. We have attempted to determine whether this mycelial extract is also capable of inhibiting the activities of acetylcholinesterase (AChE) and ${\beta}$-secretase (BACE) activity. Butanol, ethanol, and water extracts of C. pyxidata DGUM 29005 mycelia were shown to inhibit AChE activity by 99.3%, 93.7%, and 91.7%, respectively. The inhibitory value of the butanol extract was more profound than that of tacrine (95.4%). The ethanol extract also exerted an inhibitory effect against BACE activity; this fraction may harbor the potential for development into a pharmocotherapeutic modality for the treatment of Alzheimer's disease (AD) patients. Rat pheochromocytoma PC12 cells in culture were not determined to be susceptible to the cytotoxic activity evidenced by the mycelial extract. The ethanol extract inhibited endogenous AChE activity in PC12 cellular homogenates, with an $IC_{50}\;of\;67.5{\mu}g/ml$, after incubation with intact cells, and also inhibited BACE activity in a dose-dependent fashion. These results suggest that the C. pyxidata mycelial extract has the potential to enhance cholinergic function and, therefore, may perform a function in the amelioration of the cholinergic deficit observed in cases of AD, as well as other types of age-associated memory impairment.

아밀로이드 베타로 유도된 신경세포 사멸에 대한 PineXol®의 보호효과 (Protective Effect of PineXol® against Amyloid-β-induced Cell Death)

  • 한경훈;이승희;박광성;송관영;김정희;박은국;한성희
    • 한국식품영양학회지
    • /
    • 제30권6호
    • /
    • pp.1279-1285
    • /
    • 2017
  • $Amyloid-{\beta}$ protein ($A{\beta}$) is known to increase free radical production in neuronal cells, leading to cell death by oxidative stress. The purpose of this study was to evaluate the protective effects of $PineXol^{(R)}$ on $A{\beta}_{25-35}$ induced neuronal cell death. Rat pheochromocytoma (PC-12) cells were pre-treated with $100{\mu}g/mL$ of $PineXol^{(R)}$ for 2 h. The cells were exposed to single dose of $30{\mu}M$ $A{\beta}_{25-35}$ for 24 h. Cell death was assessed by a cell count kit-8 (CCK-8) assay, lactate and dehydrogenase (LDH) release assay. An Apoptotic process was analyzed by a protein expression of the Bcl-2 family using western blotting. Cell viability increased in PC-12 cells treated with both $A{\beta}_{25-35}$ and $PineXol^{(R)}$, compared to the control group. $PineXol^{(R)}$ induced a decrease of the Bcl-2 protein expression (p<0.05), while Bax and Sod1 increased (p<0.05), indicating attenuation of $A{\beta}_{25-35}$ induced apoptosis. These results suggest that $PineXol^{(R)}$ may be a good candidate for the prevention of Alzheimer's disease(AD).

Protective Effect of Celecoxib Against Nitric Oxide-Induced Inflammatory Cell Death in Rat Pheochromocytoma (PC12) Cells

  • Li, Mei-Hua;Jang, Jung-Hee;Surh, Young-Joon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 춘계학술대회 논문집
    • /
    • pp.81-82
    • /
    • 2003
  • Recent studies suggest that inflammatory events are implicated in a variaty of human diseases such as cancer and neurodegenerative diseases, and non-steroidal anti-inflammatory drugs have beneficial effects for the treatment or prevention of these disorders. Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the prostaglandin(PG) synthesis, is induced by various pro-inflammatory stimuli including nitric oxide(NO) and has been reported to cause and/or aggravate neuronal cell death.(omitted)

  • PDF

아밀로이드 베타 단백질에 의해 유도된 신경세포 독성에 대한 원추리의 억제 효과 탐색 (Protective Effects of Hemerocallis Fulva Extracts on Amyloid $\beta$-Protein-Induced Death in Neuronal Cells)

  • 김은숙;최수진;류병호;최진호;오명석;박우진;최영환;백도현;하권철;강대욱;조용권;박기태;문자영
    • 대한한의학회지
    • /
    • 제27권2호
    • /
    • pp.122-133
    • /
    • 2006
  • Objectives : The amyloid $\beta$-protein ($A\beta$) is the principal component of the senile plaques characteristic of Alzheimer's disease (AD) and elicits a toxic effect on neurons in vitro and in vivo. Many environmental factors including antioxidants and proteoglycans modify $A{\beta}toxicity$. In this study, we have investigated the protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A\beta$-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. Methods : For this study, we used MTT reduction assay for detection of protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells. We also used cell-based $\beta$-secretase assay system to investigate the inhibitory effect of water- and organic solvent-extracts of Hemerocallis fulva root on $\beta$-secretase activity. Results : We previously reported that methanol extracts of Hemerocallis fulva root strongly attenuated cytotoxicity induced by the three $A\beta$ fragments ($A{\beta}_{25-35},\;A{\beta}_{1-42}\;A{\beta}_{1-43}$) to both SK-N-MC and PC12 cells. In the present study, we found that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol had strong protective effects against $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells and inhibitory potency to $\beta$-secretase activity. Conclusion : These results suggest that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol may contain the protective component(s) against $A\beta$-induced cell death in PC12 cells as well as inhibitory component(s) to $\beta$-secretase activity.

  • PDF

$H_2O_2$로 유도된 산화적 스트레스에 대한 장원환가감방(壯元丸加減方)의 PC 12 cell 에서의 항산화 효과 (Antioxidant Effects of Gagam-jangwon-hwan(jiajianzhuangyuanwan) on Hydrogen Peroxide-Induced Oxidative Stress in PC 12 Cell Lines)

  • 박용훈;손일홍;이상원;임정현;김태헌;류영수;강형원
    • 동의신경정신과학회지
    • /
    • 제20권2호
    • /
    • pp.19-29
    • /
    • 2009
  • Objectives : Antioxidant effects of Gagam-jangwonhwan(LMK01 and 02) water extract against $H_2O_2$-induced oxidative damage and cell death were investigated in rat pheochromocytoma line PC 12. Methods : The cells were treated with LMK01 and 02 water extract and $H_2O_2$, oxidative damage-inducing materials for 24 h. The cellular viability was assessed by WST-1 assay, oxidative damages of the cells by 8-OHdG quantitation, apoptosis by Hoechst 33342 staining assay and activity of antioxidant enzymes by catalase and glutathione peroxidase assay. Results : 1. LMK01 and LMK02 water extracts improved significantly cell viability in $H_2O_2$-treated groups than $H_2O_2$-alone treated cells 2, LMK02 suppressed significantly oxidative damage in $H_2O_2$-treated groups than $H_2O_2$-alone treated cells but LMK01 didn't. Meanwhile, difference of oxidative damages in conditions treated with LMK01 or LMK02 was not significant, 3. The $H_2O_2$ induced-apoptosis in PC 12 cell lines was inhibited effectively by LMK01 and LMK02, and especially the features of apoptosis were obviously reduced in LMK02-treated cells. 4. LMK01 and LMK02 increased significantly activities of both catalase and glutathione peroxidase than those of $H_2O_2$-alone treated group and moreover, LMK02 showed significantly higher activities than those of LMK01. Conclusions : As shown, LMK01 and LMK02 suppressed $H_2O_2$-induced oxidative damage and cell death in PC 12 cell effectively. And they increased activity of major antioxidant enzymes in PC 12 cell line. Therefore, this study suggests the possibility of clinical usage over oxidative stress-induced neurodegenerative disease such as Alzheimer's disease.

  • PDF

Molecular Characterization of Ischemia-Responsive Protein 94 (irp94) Response to Unfolded Protein Responses in the Neuron

  • ;;;;권오유
    • 대한의생명과학회지
    • /
    • 제12권2호
    • /
    • pp.81-89
    • /
    • 2006
  • The ischemia-responsive 94 gene (irp94) encoding a 94 kDa endoplasmic reticulum resident protein was investigated its molecular properties associated with unfoled protein responses. First, the expression of irp94 mRNA was tested after the reperfusion of the transient forebrain ischemia induction at the central nervous system in three Mongolian gerbils. Second, irp94 expression in PC12 cells, which are derived from transplantable rat pheochromocytoma cultured in the DMEM media, was tested at transcriptional and translational levels. The half life of irp94 mRNA was also determined In PC12 cells. Last, the changes of irp94 mRNA expression were investigated by the addition of various ER stress inducible chemicals (A23187, BFA, tunicamycin, DTT and $H_2O_2$) and proteasome inhibitors, and heat shock. High level expression of irp94 mRNA was detected after 3 hours reperfusion in the both sites of the cerebral cortex and hippocampus of the gerbil brain. The main regulation of irp94 mRNA expression in PC 12 cells was determined at the transcriptional level. The half life of irp94 mRNA in PC12 cells was approximately 5 hours after the initial translation. The remarkable expression of irp94 mRNA was detected by the treatment of tunicamycin, which blocks glycosylation of newly synthesized polypeptides, and $H_2O_2$, which induces apoptosis. When PC12 cells were treated with the cytosol proteasome inhibitors such as ALLN (N-acetyl-leucyl-norleucinal) and MG 132 (methylguanidine), irp94 mRNA expression was increased. These results indicate that expression of irp94 was induced by ER stress including oxidation condition and glycosylation blocking in proteins. Expression of irp94 was increased when the cells were chased after heat shock, suggesting that irp94 may be involved in recovery rather than protection against ER stresses. In addition, irp94 expression was remarkably increased when cytosol proteasomes were inhibited by ALLN and MG 132, suggesting that irp94 plays an important role for maintaining the ERAD (endoplasmic reticulum associated degradation) function.

  • PDF