• Title/Summary/Keyword: rat hypothalamus

Search Result 103, Processing Time 0.023 seconds

The immunohistochemical study on the morphological changes of oxytocin secreting neurons in the age-related rat hypothalamus (고령에 따른 흰쥐 시상하부 oxytocin 분비세포의 형태적 변화에 대한 면역조직화학적 연구)

  • Kim, Jin-sang;Yi, Sung-joon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.29-37
    • /
    • 1995
  • This study was carried out to investigate the morphological changes of the oxytocin secreting neurons in age-related rat hypothalamus by means of immunohistochemistry. The experimental group was 20 aged female rats (Sprague-Dawley, 25~30 months), and the control group was 10 adult female rats (10 months). All animals were perfused transcardially with 4% paraformaldehyde-lysine-periocdate(PLP), and serial transverse brain sections($30{\mu}m$) were prepared by means of cryotome, and were stained with rabbit anti-oxytocin antisera immunohistochemically, using the free floating method and avidin-viotin peroxidase complex. The results were as followings. 1. The immunostained oxytocin secreting neurons were located at the paraventricular nucleus and supraoptic nucleus of age-related rat hypothalamus chiefly. 2. The numbers of oxytocin secreting neurons decreased at the paraventricular nucleus and supraoptic nucleus of age-related rat hypothalamus(p<0.01) 3. The oxytocin secreting neurons of age-related rat hypothalamus immunostained less than those of the adult rat hypothalamus, and the paraventricular nucleus immunostained greater than supraoptic nucleus in age-related rat. 4. The numbers and expansion of dendrite and axonal varicosities decreased in the age-related rat hypothalamus greatly.

  • PDF

Identification of Novel Metabolic Proteins Released by Insulin Signaling of the Rat Hypothalmus Using Liquid Chromatography-Mass Spectrometry (LC-MS)

  • Chin, Chur
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.6
    • /
    • pp.470-474
    • /
    • 2007
  • Objective : The brain is dependent on glucose as an energy source. Intricate homeostatic mechanisms have been implicated in maintaining the blood glucose concentration in the brain. The aim of this study is to find the way to identify the metabolic proteins regulating the glucose in rat hypothalamus. Methods : In this study, we analysed the secretome from rat hypothalamus in vivo. We introduced 500 nM of insulin into the rat hypothalamus. The chromatographic patterns of the secretome were identified, after which Mass Spectrometry-Mass Spectrometry (MS-MS) analysis was performed. Results : In Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, 60 proteins were identified in the secretome. Among them, 8 novel proteins were unveiled and were associated with the energy metabolism of insulin signaling in mitochondria of rat hypothalamic neuron. Nineteen other proteins have unknown functions. These ligands were confirmed to be secreting from the rat hypothalmus on insulin signaling by western blotting. Conclusion : The hypothalamus is the master endocrine gland responsible for the regulation of various physiological and metabolic processes. Proteomics using LC-MS analysis offer a efficient means for generating a comprehensive analysis of hypothalamic protein expression by insulin signaling.

Characterization of Norepinephrine Release in Rat Posterior Hypothalamus Using in vivo Brain Microdialysis

  • Sung, Ki-Wug;Kim, Seong-Yun;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • In the present study, we used the microdialysis technique combined with high performance liquid chromatography (HPLC) and electrochemical detection to measure the extracellular levels of norepinephrine (NE) in the posterior hypothalamus in vivo, and to examine the effects of various drugs, affecting central noradrenergic transmission, on the extracellular concentration of NE in the posterior hypothalamus. Microdialysis probes were implanted stereotaxically into the posterior hypothalamus (coordinates: posterior 4.3 mm, lateral 0.5 mm, ventral 8 mm, relative to bregma and the brain surface, respectively) of rats, and dialysate collection began 2 hr after the implantation. The baseline level of monoamines in the dialysates were determined to be: NE $0.17{\pm}0.01,$ 3,4-dihydroxyphenylacetic acid (DOPAC) $0.94{\pm}0.07,$ homovanillic acid (HVA) $0.57{\pm}0.05$ pmol/sample (n=8). When the posterior hypothalamus was perfused with 90 mM potassium, maximum 555% increase of NE output was observed. Concomitantly, this treatment significantly decreased the output of DOPAC and HVA by 35% and 28%, respectively. Local application of imipramine $(50\;{\mu}M)$ enhanced the level of NE in the posterior hypothalamus (maximum 200%) compared to preperfusion control values. But, DOPAC and HVA outputs remained unchanged. Pargyline, an irreversible monoamine oxidase inhibitor, i.p. administered at a dose of 75 mg/kg, increased NE output (maximum 165%), while decreased DOPAC and HVA outputs (maximum 13 and 12%, respectively). These results indicate that NE in dialysate from the rat posterior hypothalamus were neuronal origin, and that manipulations which profoundly affected the levels of extracellular neurotransmitter had also effects on metabolite levels.

Characteristics of Voltage-Dependent Clacium Uptake and Norepinephrine Release in Hypothalamus of SHR

  • Yi, Sook-Young;Kim, Yun-Tai;Kim, Kyeong-Man;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.226-230
    • /
    • 1994
  • The characteristics of voltage-dependent ^{45}Calcium$ uptake and norepinephrine release as factors controlling neural activities in the hypothalamus which is an important regulatory site for cardiovascular function wre studied. Two groups of animals : male spontaneously hyperterisive rat (SHR) and age-matched nomotensive wistar rat (NW) were used in this study. Animals at 4, 6 and 16 weeks of age were sacrificed by decapitiation and the hypothalamus was dissected out. Voltage-dependent calcium uptake and norepinephrine release were determined from hypothalamic synaptosomes either in low potassium (5 mM) or high potassium (41 mM) stimulatory conditions by using ^{45}Ca$ isotope and HPLC-ECD techniques. Degrees of voltage-dependent ^{45}Calcium$ uptake and norepinephrine release evoked by calcium uptake in the hypothalamus of prehypertensive phase (4 weeks old) of SHR were significantly smaller than those in NW of the same age. However, in the developmental phase (6 weeks old) and the established phase (16 weeks old) of hyperrtension in SHR, degrees of voltage-dependent ^{45}Calcium$ uptake and norepinephrine release were similar to those of age-matched normotensive wistae eats. These data imply that the deficit in hypothalamic norepinephrine release might be an important underlying factor for the development of hypertension in SHR.

  • PDF

Neural Tissue-Specific Epidermal Growth Factor (EGF)-like Domain Containing Protein, NELL2, Plays on Important Role in the Control Regulation of Puberty Onset in the Female Rat Hypothalamus

  • Ha, Chang-Man;Kang, Hae-Mook;Lee, Byung-Ju
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.367-373
    • /
    • 2000
  • In the present study we determined if NELL2, a neural tissue-specific protein containing 6 epidermal growth factor (EGF)-like repeat domains, plays an important role in the regulation of puberty initiation in the rat hypothalamus. We origin811y found that NELL2 is a new estrogen-responsive gene in hypothalami derived from estrogen-sterilized and control rats using a PCR differential display. In the 40-day-old female rat hypothalamus, NELL2 was up-regulated by neonatal estrogen treatment. In situ hybridization histochemistry showed that NELL2 is very abundant in the ventromedial hypothalamic nucleus that is responsible for the control of sex behavior. NELL2 mRNA level in the medial basal hypothalamus showed a dramatic increase before female puberty onset, which suggests that NELL2 may be involved in the process regulating female puberty onset. We attemped to block NELL2 synthesis with intracerebroventricular injection of an antisense oligodeoxynucleotide (ODN) to the NELL2 mRNA, and examined its effect on the puberty onset of the female rat. The antisense ODN significantly delayed puberty initiation determined by vaginal opening. In summary, NELL2 may play an important role in the regulation of female puberty onset.

  • PDF

The Expressional Changes of Nitric Oxide Synthase in the Rat Brain Following Food Restriction

  • Kang Kyounglan;Huh Youngbuhm;Park Chan;Choue Ryo Won
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.231-236
    • /
    • 2005
  • This study investigated the changes in the neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activities during food restriction in the rat brain such as cerebral cortex, cerebellum, caudate pautamen and hypothalamus. The rats were placed on a restricted feeding schedule consisting of half the ad libitum quantity for 3 days and 1, 2, 4, 6 and 9 weeks, and a free feeding schedule for 4 weeks. The loss of body weight peaked after 1 week of food restriction and persisted during the entire 9-week period of food restriction. The dramatic weight change in the first week ($12\%$) and the reduction in weight changes thereafter suggest that major adaptation changes occur early and body maintenance occurs subsequently. In the hypothalamus, the optical densities of the NADPH-d and nNOS immunoreactivities were found to be significantly higher in the 1-week and lower in the 9-week food restricted group than in the ad libitum fed control rats. In contrast, in the cerebral cortex, the optical densities of the NADPH-d- and nNOS-positive neurons were not changed significantly during the period of food restriction. This study provides the morphological evidence showing that food restriction has a significant effect on the nitric oxide synthesizing system of the hypothalamus.

Regional Heterogeneity of Morphological Changes in Cultured Rat Astrocytes

  • Won, Chung-Kil;Oh, Young-S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.467-477
    • /
    • 2001
  • We examined astrocyte regional heterogeneity in their morphological changes in response to various stimuli. Astrocytes were cultured from six different neonatal rat brain regions including cerebral cortex, hippocampus, cerebellum, mid brain, brain stem and hypothalamus. Astrocyte stellation was induced by serum deprivation and the maximum stellation in different regional astrocytes was achieved after 2 h. After 24 h, in all astrocyte cultures, the level of stellation returned to their original level. Cerebellar or hypothalamic astrocytes were the most or the least sensitive, respectively, to serum deprivation. The order of maximum sensitivity to serum deprivation among different regional astrocytes was: cerebellum>mid $brain{\ge}hippocampus,\;brain\;stem{\ge}cerebral$ cortex>hypothalamus. Isoproterenol-induced astrocyte stellation was also examined in different regional astrocytes, and similar order of maximum sensitivity as in serum deprivation was observed. Next a possible developmental effect on astrocyte morphological changes was examined in cerebral cortex and cerebellum astrocytes cultured from postnatal day 1 (P1), P4 and P7 rat brains. A much higher sensitivity of cerebellum astrocytes to serum deprivation as well as isoproterenol treatment was consistently observed in P1, P4 and P7-derived astrocytes compared to cerebral cortex astrocytes. The present study demonstrates different regional astrocytes maintain different levels of morphological plasticity in vitro.

  • PDF

Hypothalamic Orexin-A Projections to Midline Thalamic Nuclei in the Rat

  • Lee, Hyun-S.
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.145-152
    • /
    • 2005
  • A retrograde tracer, WGA-apo-HRP-gold, was injected into midline thalamic nuclei and subsequently orexin-A immunostaining was performed on the tuberal region of the hypothalamus in order to investigate orexinergic projections to the midline thalamus. Injection site was targeted within one specific region, i.e., paraventricular, centromedian, rhomboid, reuniens, or intermediodorsal nucleus, but it proved to be either one or a combination of these thalamic nuclei. The distribution of WG/orexin-double-labeled neurons exhibited a general pattern in that the majority of labeled cells were observed within the ventral portion of the lateral hypothalamus as well as the perifornical nucleus (PeF). A small number of double-labeled cells were also observed at the dorsomedial nucleus, the area dorsal to the PeF, dorsal portion of the lateral hypothalamus, and the posterior hypothalamus. These orexin-immunoreactive neurons might have wake-related influences over a variety of functions related with midline thalamic nuclei, which include autonomic control, associative cortical functions, and limbic regulation.

A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats

  • Jeong, Jin Kwon;Kim, Jae Geun;Kim, Han Rae;Lee, Tae Hwan;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an immunohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.

Charateristics of Voltage Dependent Calcium Uptake and Norepinephrine Release in Hypothalamus of DOCA-salt Hypertensive Rats

  • Lee, Jean-Young;Kim, Hae-Jung;Jung, Eun-Young;Chung, Hye-Joo;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.171-176
    • /
    • 1993
  • Purpose of the present study was to clarify the role of noradrenergic neural activities in hypothalamus for either triggering or maintaining hypertension in deoxycorticosterone (DOCA)-salt hypertensive rats. Two groups of animals were prepared: 1) normotensive Wistar rats and 2) DOCA-salt induced hypertensive rats. Voltage dependent $^{45}Ca^{++}$ uptake, endogenous norepinephrine release, and the catecholamine content in the hypothalamus of DOCA-salt hypertensive and normotensive Wistar rats were compared. Animals at 4, 6 and 16 week-old of two groups were sacrificed by decapitation and hypothalamus was dissected out. Voltage dependent calcium uptake and norepinephrine release were determined from hypothalamic synaptosomes either in low potassium or high potassium stimulatory condition by using $^{45}Ca^{++}$ isotope and HPLC-ECD technique. Degrees of voltage dependent $^{45}Ca^{++}$ uptake and norepinephrine release in hypothalamic synaptosomes of 16-week-old DOCA-salt hypertensive rats were significantly greater than those of age matched normotensive control rats. The norepinephrine and dopamine contents of hypothalamus were about the same in two groups of animals. These results suggest that the alteration of evoked norepinephrine release related to calcium uptake in hypothalamus may play a role in the maintenance of hypertension in DOCA-salt hypertensive rats.

  • PDF