• Title/Summary/Keyword: rat cortical cell culture

Search Result 25, Processing Time 0.021 seconds

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Primary Cultured Brain Cells as Screening Methods for Natural Products Acting on Glutamatergic Neurons (일차배양 뇌세포를 이용한 글루타메이트성 신경에 작용하는 천연물의 검색방법)

  • 박미정;김소라;문애리;김승희;김영중
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.444-449
    • /
    • 1995
  • Primary cultures of rat cortical and chicken embryonic brain cells were employed to establish a reliable screening method for natural products blocldng or enhancing glutamate-induced neurotoxicity. Exposure of primary cultured rat cortical cells or chicken embryonic brain cells to high dose of glutamate resulted in the fragmentation of neutites and consequent neuronal death. The level of cytoplasmic lactate dehydrogenase(LDH), indicator for cell survival in cultures, was significantly reduced at exposure to glutamate. For the practical application of the methods, series of concentrations of plants extracts and positive control were applied prior to the glutamate insult on primary cultures of rat cortical and chicken embryonic, brain cells. Relative LDH level in cells was measured for the estimation of the effect of the test materials on the glutamatergic neurons. The validity of the present screening method for natural products acting on glutamatergic neurons was examined with dextromethorphan, a known glutamatergic antagonist. The treatment of 100 $\mu{M}$ dextromethorphan prevented the reduction of LDH in rat cortical and chicken embryonic brain cells caused by glutamate insult keeping 60% and 90% of LDH level in normal control, respectively. Above results indicate that primary cultures of rat cortical and chicken embryonic brain cells could be proper systems for the screening of potential natural agents acting on glutamatergic, neurons. Between the two types of cultures, primary culture of chicken embryonic brain cells seemed to be a better system for the primary screening, since it is technically easier and economical compared to that of rat cortical cells.

  • PDF

S-nitrosation Ameliorates Homocysteine-mediated Neurotoxicity in Primary Culture of Bat Cortical Neurons (흰쥐 대뇌피질 신경세포에 미치는 호모시스틴의 신경독성에 대한 S-nitrosation의 역할)

  • Kim, Won-Ki
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.169-175
    • /
    • 1996
  • The reactivity of the sulfhydryl (thiol) group of homocysteine has been associated with an Increased risk of atherosclerosis, thrombosis and stroke. Thiols also react with nitric oxide (NO, an endothelium-derived relaxing factor (EDRF) ), forming S-nitrosothiols that have been reported to have potent vasodilatory and antiplatelet effects and been expected to decrease adverse vascular effects of homocysteine. The present study was aimed to Investigate whether the S-nitrosation of homocysteine modulates the neurotoxic effects of homocysteine. An 18 hour-exposure of cultured rat cortical neurons to homocysteine ( >1 mM) resulted in a significant neuronal cell death. At comparable concentrations ( <10 mM), however, S-nitrosohomocysteine did not induce neuronal cell death. Furthermore, S-nitrosohomocysteirle partially blocked NMDA-mediated neurotoxicity. S-nitrosohomocysteine also decreased NMDA-mediated increases in intracellular calcium concentration. The present data indicate that in brain nitric oxide produced from neuronal and nonneuronal cells can modulate the potential, adverse properties of homocysteine.

  • PDF

Suppression of Reactive Oxygen Species Production by Water-extracts of Coptidis Rhizoma Enhances Neuronal Survival in a Hypoxic Model of Cultured Rat Cortical Cells. (흰쥐 대뇌세포의 저산소증 모델에서 황련의 활성산소 생성 억제와 신경세포사 억제)

  • Choi, Ju-Li;Shin, Gil-Jo;Lee, Won-Chul;Moon, Il-Soo;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.311-317
    • /
    • 2008
  • Pathophysiological oxidative stress results in neuronal cell death mainly due to the generation reactive oxygen species (ROS). In low oxygen situation such as hypoxia and ischemia, excessive ROS is generated. Coptidis Rhizoma (CR) is a traditional medicine used for the incipient stroke. In this report we show that CR water extracts $(1\;{\mu}g/ml)$ exhibited protective effects of neuronal cell death in a hypoxic model (2% $O_2/5%\;CO_2,\;37^{\circ}C,$ 3 hr) of cultured rat cortical cells. We further show that CR water extracts significantly reduced the intensity of green fluorescence after staining with $H_2DCF-DA$ on one hour and three days after hypoxic shock and in normoxia as well. Our results indicate that CR water extracts prevent neuronal death by suppressing ROS generation.

Prevention of ROS Production and MMP Dissipation by Fructus Schisandrae(FS) in a Hypoxic Model of Cultured Rat Hippocampal Neurons (오미자(五味子)(Fructus Schisandrae)가 흰쥐 해마신경세포의 저산소증 모델에서 세포사에 미치는 영향)

  • Ju, Dae-Hwan;Shin, Gil-Cho;Moon, Il-Soo
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.835-845
    • /
    • 2008
  • Objectives : The purpose of this study was to investigate the effect of FS for the modulation of ROS and MMP in a hypoxic model of cultured rat cortical cells. Methods : For the effect of FS on the viability, FS was added to culture media (neurobasal supplemented with B27) and cell viability was measured by LDH assay. To investigate the effects of FS on ROS generation and MMP preservation, cells grown in FS-containing media were given a hypoxic shock(2% $O_2/5%$ $CO_2$, $37^{\circ}C$, 3 hrs) on DIV 10, stained with $H_2DCF-DA$(10 nM) and JC-1, respectively, and observed by fluorescent microscope. Results : 1. FS has a protective effect of cortical cells in both normoxia and hypoxia. 2. FS reduced the generation of ROS and this reduction was especially significant at 3 days after hypoxia. 3. FS was effective for the maintenance of MMP in hypoxia, and this efficacy was especially significant at 3 days after hypoxia. Conclusions : Taken together, these results indicate that FS attenuates ROS generation and MMP dissipation, which eventually protects from neuronal cell death in hypoxia.

  • PDF

Microarray Analysis of Alteration in Gene Expression by Acori graminei rhizoma (AGR) Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells (흰쥐 대뇌세포의 저산소증 모델에서 석창포(石菖浦 Acori graminei rhizoma. AGR)에 의한 유전자 표현 변화의 microarray 분석)

  • Park, Dong-Jun;Jung, Seung-Hyun;Moon, Il-Soo;Lee, Won-Chol;Shin, Gil-Jo
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.150-161
    • /
    • 2007
  • Acori graminei Rhizomn (AGR) is a perennial herb which has been used clinically as a traditional oriental medicine against stroke, Alzheimer's disease, and vascular dementia. We investigated the effect of AGR on the modulation of gene expression profile in a hypoxic model of cultured rat cortical cells. Rat cerebrocortical cells were grown in Neurobasal medium. On DIV12, cells were treated with AGR $(10ug/m\ell)$, given a hypoxic shock (2% $O_2$, 3 hr) on DIV14, and total RNAs were prepared one day after shock. Microarray analyses indicated that the expression levels of most genes were altered within the global M values +0.5 and -0.5, i.e., 40% increase or decrease. There were 750 genes which were upregulated by < global M +0,2, while 700 genes were downregulated by > global M -0.2. The overall profile of gene expression suggests that AGR suppresses apoptosis (upregulation of anti-apopotic genes such as TEGT, TIEG, Dad, p53, and downregulation of pro-apopotic genes such as DAPK, caspase 2, pdcd8), ROS (upregulation of RARa, AhR), and that AGR has neurotrophic effects (upregulation of Aktl, Akt2). These results provide a platform for investigation of the molecular mechanism of the effect of AGR in neuroprotection.

Microarray Analysis of Gene Expression Affected by Water-extracts of Pinelliae rhizoma in a Hypoxic Model of Cultured Rat Cortical Cells (배양대뇌신경세포 저산소증모델에서 반하여 의한 유전자표현의 변화)

  • Kwon, Gun-Rok;Jung, Hyun-Jung;Shin, Gil-Jo;Moon, Il-Soo;Lee, Won-Chul;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.905-916
    • /
    • 2009
  • Pinelliae rhizoma (Pr, 半夏) is a traditional medicine used in the treatment of incipient stroke. We investigated the effects of Pr on gene expression in a hypoxic model using cultured rat cortical cells. Pr (2.5 $\mu$g/ml) was added to the culture medium on DIV 12. A hypoxic shock (2% 0$_2$/5% CO$_2$, 37$^{\circ}$C, 3 hr) was given two days later (on DIV 14), and total mRNAs were isolated at 24 hr post-shock from both Pr-treated samples and untreated control cultures. Microarray using TwinChip $^{TM}$ Rat-5K (Digital Genomics, Seoul) indicated that Pr upregulated genes for cell growth and differentiation (tubb5, tgfa, ptpn11, n-ras, pdgfa) and antiapoptosis (mcl-1), while downregulating the apoptosis-induced gene (tieg). Therefore, it is interpreted that Pr protects neurons from hypxoic shock by maintaining cell growth and differentiation and by preventing apoptosis.

Effects of Water-extract Mixture of Scutellariae baicalensis GEORGI, Acarus gramineus SOLAND and Gastrodia elata BLUME on Cultured Rat Cortical Neurons and Enhancement of Learning and Memory Power (황금(黃芩), 석창포(石菖蒲), 천마(天麻) 물추출액 혼합물이 배양한 흰쥐 대뇌신경세포의 활성과 학습능력 증진 효능)

  • Bae, Chul-Hwan;Jung, Hyun-Jung;Jung, Seung-Hyun;Moon, Il-Soo;Lee, Won-Chul;Sin, Gil-Jo
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.756-764
    • /
    • 2009
  • Scutellariae baicalensis GEORGt Acorus gramineus SOLAND and Gastrodia elata BLUME are traditional medicines used in the treatment of incipient stoke. In this study we investigated their effects on various aspects of neuronal differentiation in single or composite forms. Water-extracts of these medicines showed neuroprotective effects on cultured rat cortical neurons in normoxia and hypoxia. To understand the mechanism for neuroprotection we carried out various cell biological assays. They stimulated initial differentiation of neuronal development (transition from stage 1 to 2), and increased the number of spines and the length and number of dendritic processes. These effects were best manifested in the experimental group, which were given a mixture of the three kinds of extracts (p<0.01). To assess improvement of brain functions we carried out Morris water-maze tests for the mice that were fed on these extracts instead of water for 4 weeks. The experimental groups, especially those which were given the mixture of the three kinds of extract, showed significant (p<0.01) enhancement in memory as early as one day after the learning trial. These results indicate that these three kinds of extracts have synergistic effects on neuronal protection and improvement of brain functions.

Upregulation of heme oxygenase-1 by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells. (흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 heme oxygenase-1의 표현증가)

  • Lee, Won-Chol;Kim, Wan-Sik;Shin, Gil-Jo;Moon, Il-Soo;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.706-713
    • /
    • 2007
  • Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of heme oxygenase-1(HO-1), which has important biological roles in regulating mitochondrial heme protein turnover and in protecting against conditions such as hypoxia, neurodegenerative diseases, or sepsis. Rat cerebrocortical day In vitro(DIV)12 cells were grown in neurobasal medium. On DIV12 cells were treated with SB($20{\mu}g/ml$) and given a hypoxic shock ($2%\;O_2/5%\;CO_2,\;3\;hr$) on DIV14. In situ hybridization results revealed that SB upregulated HO-1 mRNA in neuronal dendrites in both normoxia and hypoxia(38.5% and 59.2%, respectively). At the protein level, SB upregulated HO-1 in the neuronal soma in both normoxia and hypoxia(22.4% and 15.7%, respectively). Interestingly, most significant increase was associated with astrocytes, which increased HO-1 protein by 77.5% compared to SB-untreated culture. These results indicate that SB upregulates both neuronal and glial HO-1 expression, which contributes to the neuroprotection efficacy in hypoxia).

Neuroprotective Effects of Pinelliae Rhizoma Water-Extract by Suppression of Reactive Oxygen Species and Mitochondrial Membrane Potential Loss in a Hypoxic Model of Cultured Rat Cortical Cells. (배양대뇌신경세포 저산소증모델에서 유해산소생성억제 및 사립체막전위 소실방지에 의한 반하(半夏)의 신경세포사 억제 효능)

  • Kwon, Gun-Rok;Moon, Il-Soo;Lee, Won-Chul
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.598-606
    • /
    • 2009
  • Oxidative stress by free radicals is a major cause of neuronal cell death. Excitotoxicity in hypoxia/ischemia causes an increase in reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP), resulting in dysfunction of the mitochondria and cell death. Pinelliae Rhizoma (PR) is a traditional medicine for incipient stroke. We investigated the effects of PR Water-Extract on the modulation of ROS and MMP in a hypoxic model using cultured rat cortical cells. PR Water-Extract was added to the culture medium at various concentrations (0.25${\sim}$5, 5.0 ${\mu}g/ml$) on day in vitro 12(DIV12), given a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hr), and cell viability was assessed on DIV15 by Lactate Dehydrogenase Assay (LDH assays). PR Water-Extract showed a statistically significant effect on neuroprotection (10${\sim}$15% increase in viability; p<0.01) at 1.0 and 2.5 ${\mu}g/ml$ in normoxia and hypoxia. Measurement of ROS production by $H_2DCF-DA$ stainings showed that PR Water-Extract efficiently reduced the number and intensity of ROS-producing neurons, especially at 1 hr post shock and DIV15. When MMP was measured by JC-1 stainings, PR Water-Extract efficiently maintained high-energy charged mitochondria. These results indicate that PR Water-Extract protects neurons in hypoxia by preventing ROS production and preserving the cellular energy level.