• Title/Summary/Keyword: rat calvarial defect model

Search Result 35, Processing Time 0.022 seconds

HEALING PROCESS OF THE CALVARIAL DEFECT FILLED WITH HYDROXYLAPATITE AND TGF-β IN RAT (백서 두개골 결손부에 Hydroxylapatitie와 TGF-β 매식 후 치유과정에 관한 연구)

  • Kwon, Hyuk-Do;Lee, Dong-Kuen;Kim, Eun-Chol
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The purpose of this study was to evaluate the healing process of the calvarial defect filled with hydroxylapatite(HA) and $TGF-{\beta}$ in Rat. 72 Sprague-Dawly rats were divided into 3 groups, control and two experimental groups. Bony defect were artificially prepared in the calvaria of all 72 rats and followed by implantation of HA (experimental group of 24 rats) and HA+$TGF-{\beta}$(another experimental group of 24 rats) into the defects. Sequential sacrifice was performed at 1, 2, 4, 6, 8, 12 weeks of experiment. Obtained specimen was stained with Hematoxylin and Eosin, Masson's Trichrome and Immunohistochemistry. The results were as follows, 1. Granulation tissue was prominent on control group in 1 and 2 weeks. Bony defects were filled with dense fibrous tissue through the whole experimental period and osteoinduction could not be observed in all groups. 2. Inflammatory cell infiltration was prominent on control group in 1 and 2 weeks and osteoclastic activity was high in HA implanted experimental group at 1 and 2 weeks. 3. Inflammatory cell infiltration was less and maturation of fibrous tissue could be found on HA+$TGF-{\beta}$ implanted experimental group at 1 and 2 weeks. 4. Osteoconduction activity was high in HA+$TGF-{\beta}$ implanted experimental group at 2 and 4 weeks but there was no difference after 6 weeks among 3 groups. 5. In grafted site of HA+$TGF-{\beta}$ implanted group, osteonectin expression was slightly increased from 1 week to 6 weeks. In the host site, it was increased from 1 to 4weeks. 6. In grafted site of HA+$TGF-{\beta}$ implanted group, osteocalcin expression was high at 4 weeks. In the host site, we could find the difference among 3 groups. From above results, the HA with mixture of $TGF-{\beta}$ has the potentiality of promoting bone formation in the bony defect area in the rat.

  • PDF

Effect of Murine Adipose Derived Stem Cell(ADSC) on Bone Induction of Demineralized Bone Matrix(DBM) in a Rat Calvarian Defect Model (백서의 두개골 결손 모델에 있어 지방유래 줄기세포가 탈회골의 골유도에 미치는 영향)

  • Heo, Chan Yeong;Lee, Eun Hye;Seo, Seog Jin;Eun, Seok Chan;Chang, Hak;Baek, Rong Min;Minn, Kyeong Won
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.631-636
    • /
    • 2008
  • Purpose: Adipose tissue-derived stem cells(ADSC) has an osteoconductive potential and demineralized bone matrix(DBM) is an osteoinductive material. A combination of DBM and ADSC wound probably create osteoinductive properties. The purpose of this study is to determine the effect of the combination of DBM and ADSC mixture on healing of rat calvarial defect. Methods: Thirty adult male Sprague-Dawley rats were randomized into 3 groups(n=10) as 1) Control, 2) DBM alone, 3) DBM with ADSC mixture. DBM with ADSC mixture group has had a 3-day preculture of ADSC from groin fat pad. An 6 mm critical size circular calvarial defect was made in each rat. Defect was implanted with DBM alone or DBM with ADSC mixture. Control defect was left unfilled. 6 and 12 weeks after the implantation, the rats were sacrificed and the defects were evaluated by histomorphometric and radiographical studies. Results: Histomorphometric analysis revealed that DBM with ADSC mixture group showed significantly higher bone formation than DBM alone group(p<0.05). Although radiographs from DBM alone group and DBM with ADSC group revealed similar diffuse radiopaque spots dispersed throughout the defect. Densitometric analysis of calvarial defect revealed DBM with ADSC mixture group significantly higher bone formation than DBM alone(p<0.05). There was correlation of densitometry with new bone formation(Spearman's correlation of coefficient=0.804, 6 weeks, 0.802, 12 weeks). Conclusion: The DBM with ADSC mixture group showed the best healing response and the osteoinductive properties of DBM were accelerated with ADSC mixture. It will be clinically applicable that DBM and ADSC mixture in plastic and reconstructive surgery, such as alveolar cleft and congenital facial deformities that bone graft should be required.

BONE REGENERATION WITH MMP SENSITIVE HYALURONIC ACID-BASED HYDROGEL, rhBMP-2 AND NANOPARTICLES IN RAT CALVARIAL CRITICAL SIZE DEFECT(CSD) MODEL (Matrix metalloproteinase(MMP) sensitive hyaluronic acid hydrogel-nanoparticle complex와 rhBMP-2를 이용한 골재생)

  • Nam, Jeong-Hun;Park, Jong-Chul;Yu, Sang-Bae;Chung, Yong-Il;Tae, Gi-Yoong;Kim, Jung-Ju;Park, Yong-Doo;Jahng, Jeong-Won;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.3
    • /
    • pp.137-145
    • /
    • 2009
  • As an efficient controlled release system for rhBMP-2, a functional nanoparticle-hydrogel complex, incorporated with matrix metalloproteinase(MMP) sensitive peptide cross-linker, was developed and used as a bone transplant. In vivo bone formation was evaluated by soft x-ray, histology, alkaline phosphatase(ALP) activity and mineral contents analysis, based on the rat calvarial critical size defect(8mm in diameter) model. Significantly, effective bone regeneration was achieved with the rhBMP-2 loaded MMP sensitive hyaluronic acid(HA) based hydrogel-Nanoparticles(NP) complex, as compared to only MMP HA, the MMP HA-NP without rhBMP-2, or even with the rhBMP-2. These improvements included the formation pattern of bone and functional marrow, the degree of calcium quantification, and the ALP activity. These results indicate that the MMP sensitive HA with nano-particle complex can be a promising candidate for a new bone defect replacement matrix, and an enhanced rhBMP-2 scaffold.

Effect of Porcine Cancellous Bones on Regeneration in Rats with Calvarial Defect (랫드의 두개골 결손부에서 돼지 해면질골이 골재생에 미치는 영향)

  • Yoo, Kyeong-Hoon;Kim, Se-Eun;Shim, Kyung-Mi;Park, Hyun-Jeong;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1207-1213
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of porcine cancellous bone as a scaffold in a rat calvarial defect model. Critical-sized defects were created in 30 male Sprague-Dawley rats. The animals were divided into critical defect (CD, n=10), $\beta$-tricalcium phosphate (TCP) graft (BT, n=10) and porcine cancellous bone graft (PCB, n=10) groups. Each defect was filled with $\beta$-TCP mixed with fibrin glue or porcine cancellous bone powder mixed with fibrin glue. In the CD group, the defect was left empty. All rats were sacrificed at 8 weeks after bone graft surgery, and bone formation was evaluated by gross observation, plain radiography, micro-computed tomography scanning and histological evaluation. Repair of bone defect was the least in the CD group, and significant new bone formation was observed in the PCB group. Grafting of porcine cancellous bone was more efficient for regenerating new bone than grafting $\beta$-TCP.

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

Effect of Matrigel for Bone Graft using Hydroxyapatite/Poly $\varepsilon$-caprolactone Scaffold in a Rat Calvarial Defect Model (랫드의 두개골결손부 모델에서 HA/PCL 지지체를 사용한 골이식 시 Matrigel의 효과)

  • Kim, Se-Eun; Shim, Kyung-Mi;Kim, Seung-Eon;Choi, Seok-Hwa;Bae, Chun-Sik;Han, Ho-Jae;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.325-329
    • /
    • 2010
  • The osteogenic potential of hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) scaffolds with matrigel was evaluated in a rat calvarial defect model. Calvarial defect formation was surgically created in Sprague Dawley rats (n = 18). HA/PCL scaffold was grafted with matrigel (M-HA/PCL group, n = 6) or without matrigel (HA/PCL group, n = 6). A critical defect group (CD group, n = 6) did not received a graft. Four weeks after surgery, bone formation was evaluated with radiography, micro computed tomography (micro CT) scanning, and histologically. No bone tissue formation was radiographically evident in the CD group. Bone tissue was radiographically evident in the HA/PCL and M-HA/PCL groups, however, there was more bone-similar opacity in the M-HA/PCL group. Micro CT analysis revealed that the bone volume of the M-HA/PCL group was higher than the HA/PCL group, however, no significant difference was found between the HA/PCL and M-HA/PCL groups. Bone mineral density in the M-HA/ PCL group was significantly higher than in the HA/PCL group (p < 0.05). Histologically, new bone was formed only from existing bone in the CD group, showing concavity without bone formation in the defect. In the HA/PCL group, new bone formation was only derived from existing bone, while in the M-HA/PCL group the largest bone formation was observed, with new bone tissue forming at the periphery of existing bone and around the HA/PCL scaffold with matrigel. The results indicate that the combination of HA/PCL scaffold with matrigel may be an effective means of enhancing bone formation in critical-sized bone defects.

The effect of 4-hexylresorcinol on xenograft degradation in a rat calvarial defect model

  • Kang, Yei-Jin;Noh, Ji-Eun;Lee, Myung-Jin;Chae, Weon-Sik;Lee, Si Young;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.29.1-29.9
    • /
    • 2016
  • Background: The objective of this study was to evaluate xenograft degradation velocity when treated with 4-hexylresorcinol (4HR). Methods: The scapula of a cow was purchased from a local grocery, and discs (diameter 8 mm, thickness 1 mm) were prepared by trephine bur. Discs treated with 4HR were used as the experimental group. Untreated discs were used as the control. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), antibacterial test, endotoxin test, and scanning electron microscopy (SEM) were performed on the discs. In vivo degradation was evaluated by the rat calvarial defect model. Results: The XRD and FT-IR results demonstrated successful incorporation of 4HR into the bovine bone. The experimental disc showed antibacterial properties. The endotoxin test yielded results below the level of endotoxin contamination. In the SEM exam, the surface of the experimental group showed needle-shaped crystal and spreading of RAW264.7 cells. In the animal experiments, the amount of residual graft was significantly smaller in the experimental group compared to the control group (P = 0.003). Conclusions: In this study, 4HR was successfully incorporated into bovine bone, and 4HR-incorporated bovine bone had antibacterial properties. In vivo experiments demonstrated that 4HR-incorporated bovine bone showed more rapid degradation than untreated bovine bone.

The Analysis of Bone regenerative effect with carriers of bone morphogenetic protein in rat calvarial defects (백서두개골 결손부에서 BMP전달체의 골재생효과분석)

  • Jung, Sung-Won;Jung, Jee-Hee;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.733-742
    • /
    • 2007
  • Bone morphogenetic proteins have been shown to possess significant osteoinSductive potential, but in order to take advantage of this effect for tissue engineering, carrier systems are essential. Successful carrier systems must enable vascular and cellular invasion, allowing BMP to act as a differentiation factor. The carrier should be reproducible, non-immunogenic, moldable, and space-providing, to define the contours of the resulting bone. The purpose of this study was to review available literature, in comparing various carriers of BMP on rat calvarial defect model. The following conclusions were deduced. 1. Bone regeneration of ACS/BMP, ${\beta}-TCP/BMP$, FFSS/BMP, $FFSS/{\beta}-TCP/BMP$, MBCP/BMP group were significantly greater than the control groups. 2. Bone density in the ACS/BMP group was greater than that in ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$ carrier group. 3. Bone regeneration in FFSS/BMP group was less than in ACS/BMP, ${\beta}-TCP/BMP$, MBCP/BMP group. However, New bone area of $FFSS/{\beta}-TCP/BMP$ carrier group were more greater than that of FFSS/BMP group. ACS, ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$, MBCP were used for carrier of BMP. However, an ideal carrier which was reproducible, non-immunogenic, moldable, and space-providing did not exist. Therefore, further investigation are required in developing a new carrier system.

The Effect of Safflower Seed Extract on the Bone Formation of Calvarial Bone Model in Sprague Dawley rat (백서 두개골 결손부에서 홍화씨 추출물의 골조직 재생 유도 효과)

  • Kim, Sung-Tae;Jhon, Gil-Ja;Lim, So-Hyoung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.835-852
    • /
    • 2000
  • The ultimate goal of periodontal therapy is the regeneration of periodontal tissue and repair of function. For more than a decade there have been many efforts to develop materials and methods of treatment to promote periodontal wound healing. Recently many efforts are concentrated on the regeneration potential of material used in oriental medicine. In some in vitro and in vivo experiments, there have been many evidences that these materials have an effect on bone regeneration. The purpose of this study was to evaluate histologically and radiologically in Sprague-Dawley rats the effects of safflower seed extracts on the regeneration of the calvarial defects surgically produced. So in this study, the critical size defects were surgically produced in the calvarial bone of 30 Sprague-Dawley rats using the 8mm trephine bur. The safflower seed extract was applied into the defect of each rat in experimental group, whereas nothing was applied into the defect of each rat in control group. Rats were sacrificed at 2, 4, 8 weeks following operation and histomorphometric and radiodensitometric analysis were performed. 1. The newly formed bone length was $102.91{\pm}22.05$, $178.29{\pm}24.40$ at 2 week in the each control, experimental group, $130.95{\pm}39.24$, $242.62{\pm}50.33$ at 4 week and $181.53{\pm}76.35$, $240.36{\pm}22.00$ at 8 week($unit,{\mu}m$). In the 2, 4 week, there were statistically significant difference between control and experimental group(P<0.05). 2. The newly formed bone area was $2962.06{\pm}1284.48$, $10648.35{\pm}1284.48$ at 2 week, $5103.25{\pm}1375.88$, $9706.78{\pm}1481.81$ at 4 week, $8046.02{\pm}818.99$, $12057.06{\pm}740.47$ at 8 week($unit,{\mu}m^2$). In every week, there were statistically significant difference between control and experimental group(P<0.05). 3. The radiopacity was $14.26{\pm}.33$, $25.47{\pm}4.33$ at 2 week, $20.06{\pm}9.07$, $26.61{\pm}2.78$ at 4 week, $22.99{\pm}3.76$, $27.29{\pm}1.54$ at 8 week(unit, %). In the 2 week, there was statistically significant difference between control and experimental group(P<0.05). In conclusion, the results of the present study suggest that safflower seed extract initially has an effect on the newly formed bone area, length and radiopacity when it is applied to the calvarial defect of Sprague - Dawley rat. Then. the material has an effect on newly formed bone area and length.

  • PDF

The effects of newly formed synthetic peptide on bone regeneration in rat calvarial defects

  • Choi, Jung-Yoo;Jung, Ui-Won;Kim, Chang-Sung;Eom, Tae-Kwan;Kang, Eun-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Purpose: Significant interest has emerged in the design of cell scaffolds that incorporate peptide sequences that correspond to known signaling domains in extracellular matrix and bone morphogenetic protein. The purpose of this study was to evaluate the bone regenerative effects of the synthetic peptide in a critical-size rat calvarial defect model. Methods: Eight millimeter diameter standardized, circular, transosseus defects created on the cranium of forty rats were implanted with synthetic peptide, collagen, or both synthetic peptide and collagen. No material was was implanted the control group. The healing of each group was evaluated histologically and histomorphometrically after 2- and 8-week healing intervals. Results: Surgical implantation of the synthetic peptide and collagen resulted in enhanced local bone formation at both 2 and 8 weeks compared to the control group. When the experimental groups were compared to each other, they showed a similar pattern of bone formation. The defect closure and new bone area were significantly different in synthetic peptide and collagen group at 8 weeks. Conclusions: Concerning the advantages of biomaterials, synthetic peptide can be an effective biomaterial for damaged periodontal regeneration.