• Title/Summary/Keyword: rat brain injury

Search Result 115, Processing Time 0.027 seconds

Protective Effects of Singihwan (腎氣丸) on Traumatic Brain Injury-induced Apoptosis in Rat Hippocampal Dentate Gyrus

  • Kwon, Oh-Bong;Song, Yun-kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.21-31
    • /
    • 2008
  • Backgrounds: Singihwan is used "to strengthen inborn energy" and we suspected a protective effect on brain neuron cells. Objectives: The aim of this study was to evaluate the effects of Singihwan (SGH) on traumatic brain injury-induced delayed apoptosis in rat hippocampal dentate gyrus. Methods: For a surgical induction of traumatic brain injury (TBI), a 5 mm diameter stainless rod was used to make traumatic attack from the surface of the brain used by an impactor. The protective effect of the aqueous extract of SGH against TBI in the rat hippocampal dentate gyrus was investigated by using step-down avoidance task, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, Bax immunohistochemistry, and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. Results: The aqueous extract of SGH suppressed the TBI-induced increase in apoptosis and cell proliferation in the hippocampal dentate gyrus. Conclusions: It is possible that the aqueous extract of SGH has a neuroprotective effect on TBI-induced neuronal cell death.

  • PDF

The Effect of Proprioceptive and Vestibular Sensory Input on Expression of BDNF after Traumatic Brain Injury in the Rat (고유감각과 전정감각 입력이 외상성 뇌손상 쥐의 BDNF 발현에 미치는 영향)

  • Song, Ju-Min
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Purpose : The purposes of this study were to test the effect of proprioceptive and vestibular sensory input on expression of BDNF after traumatic brain injury in the rat. Subject : The control group was sacrificed at 24 hours after traumatic brain injury. The experimental group I was housed in standard cage for 7 days. The experimental group II was housed in standard cage after intervention to proprioceptive and vestibular sensory(balance training) for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, rats were sacrificed and cryostat coronal sections were processed individual1y in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section and contralateral brain section from immunohistochemistry using light microscope. Result : The results of this experiment were as follows: 1. In control group, cell bodies in lateral nucleus of cerebellum, superior vestibular nucleus, purkinje cell layer of cerebellum and pontine nucleus changed morphologically. 2. The expression of BDNF in contralateral hemisphere of group II were revealed. 3. On 7th day after operation, immunohistochemical response of BDNF in lateral nucleus, superior vestibular nucleus, purkinje cell layer and pontine nucleus appeared in group II. Conclusion : The present results revealed that intervention to proprioceptive and vestibular sensory input is enhance expression of BDNF and it is useful in neuronal reorganization improvement after traumatic brain injury.

  • PDF

Neuroprotective effects of consuming bovine colostrum after focal brain ischemia/reperfusion injury in rat model

  • Choi, Han-Sung;Ko, Young-Gwan;Lee, Jong-Seok;Kwon, Oh-Young;Kim, Sun-Kyu;Cheong, Chul;Jang, Ki-Hyo;Kang, Soon-Ah
    • Nutrition Research and Practice
    • /
    • v.4 no.3
    • /
    • pp.196-202
    • /
    • 2010
  • To investigate the neuroprotective effects of bovine colostrums (BC), we evaluate the ability of consuming BC after focal brain ischemia/reperfusion injury rat model to reduce serum cytokine levels and infarct volume, and improve neurological outcome. Sprague-Dawley rats were randomly divided into 4 groups; one sham operation and three experimental groups. In the experimental groups, MCA occlusion (2 h) and subsequent reperfusion (O/R) were induced with regional cerebral blood flow monitoring. One hour after MCAO/R and once daily during the experiment, the experimental group received BC while the other groups received 0.9% saline or low fat milk (LFM) orally. Seven days later, serum pro-inflammatory cytokine (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) and anti-inflammatory cytokine (IL-10) levels were assessed. Also, the infarct volume was assessed by using a computerized image analysis system. Behavioral function was also assessed using a modified neurologic severity score and corner turn test during the experiment. Rats receiving BC after focal brain I/R showed a significant reduction (-26%/-22%) in infarct volume compared to LFM/saline rats, respectively (P < 0.05). Serum IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ levels were decreased significantly in rats receiving BC compared to LFM/saline rats (P < 0.05). In behavioral tests, daily BC intake showed consistent and significant improvement of neurological deficits for 7 days after MCAO/R. BC ingestion after focal brain ischemia/reperfusion injury may prevent brain injury by reducing serum pro-inflammatory cytokine levels and brain infarct volume in a rat model.

The Effect of Sensory Stimulation and Therapeutic Environment on Expression of BDNF after Traumatic Brain Injury in the Rat (감각 자극과 치료적 환경이 외상성 뇌손상 흰쥐의 BDNF 발현에 미치는 영향)

  • Song, Ju-Min
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • Purpose : The purpose of this study was to test the effect of balance training for proprioceptive and vestibular sensory stimulation and therapeutic environment on expression of BDNF after traumatic brain injury in the rat. Subject : Twelve Sprague-Dawley rats were randomly assigned into group I and group II. After traumatic brain injury, group I was housed in standard cage for 7 days. Group II was housed in therapeutic cage after balance training for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, the rats were sacrificed and cryostat coronal sections were processed individually in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section from immunohistochemistry using light microscope. Result : Immunohistochemical response of BDNF in lateral nucleus, purkinje cell layer, superior vestibular nucleus and pontine nucleus appeared very higher in group II than in group I Conclusion : The present result revealed that simultaneously application of balance training for proprioceptive and vestibular sensory stimulation input and therapeutic environment in traumatic brain injured rats is enhance expression of BDNF and it is facilitates neural plasticity.

  • PDF

The Effect of Gongjin-dan on Gliosis in Middle Cerebral Artery Occlusion (MCAO) Rats (공진단이 MCAO모델 흰쥐에서 gliosis 억제에 마치는 영향)

  • Seong, Kee-Moon;Hae, Rae-Kyong;Song, Bong-Keun
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.674-684
    • /
    • 2009
  • Objectives : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis becomes a physical and a mechanical barrier to axonal regeneration. Reactive gliosis induced by ischemic injury such as middle cerebral artery occlusion is involved with up-regulation of GFAP and CD81. This study was undertaken to examine the effect of the Gongjin-dan (GJD) on CD81 and GFAP expression and its pathway in the rat brain following middle cerebral artery occlusion (MCAO). Methods : In order to study ischemic injuries on the brain, infarction was induced by MCAO using insertion of a single nylon thread, through the internal carotid artery, into a middle cerebral artery. Cresyl violet staining, cerebral infarction size measurement, immunohistochemistry and microscopic examination were used to detect the expression of CD81 and GFAP and the effect on the infarct size and pyramidal cell death in the brain of the rat with cerebral infarction induced by MCAO. Also, c-Fos and ERK expression were measured to investigate the signaling pathway after GJD administration in MCAO rats. Results : Measuring the size of cerebral infarction induced by MCAO in the rat after injection of GJD showed the size had decreased. GJD administration showed pyramidal cell death protection in the hippocampus in the MCAO rat. GJD administration decreased GF AP expression in the MCAO rat. GJD administration decreased CD81 expression in the MCAO rat. GJD administration induced up-regulation of c-FOS expression compared with MCAO. GJD administration induced down-regulation of ERK expression compared with MCAO. Conclusion : We observed that GJD could suppress the reactive gliosis, which disturbs the axonal regeneration in the brain of a rat with cerebral infarction after MCAO by controlling the expression of CD81 and GFAP. The effect may be modulated by the regulation of c-Fos and ERK. These results suggest that GJD can be a candidate to regenerate CNS injury.

  • PDF

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.

Hypothermia Effect on Apoptotic Neuronal Death in Traumatic Brain Injury Model

  • Yoo, Do-Sung;Lee, Soon-Kyu;Huh, Pil-Woo;Han, Young-Min;Rha, Hyung-Kyun;Kim, Dal-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.3
    • /
    • pp.215-220
    • /
    • 2005
  • Objective : Many researchers believe that the hypothermia shows neuro-protective effect on brain injury. To understand the molecular mechanism of the hypothermic treatment, this study investigated its effects on the expression of cell death or survival related proteins such as p53, Bcl-2 and Bax in the rat traumatic brain injury[TBI] model. Methods : Twenty rats [Spraque Dawley, $200{\sim}250g$] were subjected to the brain injury of moderate severity [$2.4{\sim}2.6atm$] using the fluid percussion injury device and five rats were received only same surgery as controls. During 30minutes after the brain injury, the hypothermia group was maintained the body temperature around $34^{\circ}C$ while the control group were maintained that of $36^{\circ}C$. Five rats in each group were sacrificed 12h or 24h after brain injury and their brain sections was analyzed for physical damages by H-E stains and the extent of apoptosis by TUNEL assay and immunohistochemical stains. The tissue damage after TBI was mainly observed in the ipsilateral cortex and partly in the hippocampus. Results : Apoptosis was observed by TUNEL assay and the Bax protein was detected in both sample which harvested 12h and 24h after TBI. In the hypothermia treatment group, tissue damage and apoptosis were reduced in HE stains and TUNEL assay. In hypothermia treatment group rat shows more expression of the Bcl-2 protein and shows less expression of the Bax protein, at both 12h and 24h after TBI. Conclusion : These results show that the hypothermia treatment is an effective treatment after TBI, by reducing the apoptotic process. Therefore, it could be suggested that hypothermia has a high therapeutic value for treating tissue damages after TBI.

Protection of the brain through supplementation with larch arabinogalactan in a rat model of vascular dementia

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Vascular dementia (VaD) caused by reduced blood supply to the brain manifests as white matter lesions accompanying demyelination and glial activation. We previously showed that arabinoxylan consisting of arabinose and xylose, and arabinose itself attenuated white matter injury in a rat model of VaD. Here, we investigated whether larch arabinogalactan (LAG) consisting of arabinose and galactose could also reduce white matter injury. MATERIALS/METHODS: We used a rat model of bilateral common carotid artery occlusion (BCCAO), in which the bilateral common carotid arteries were exposed and ligated permanently with silk sutures. The rats were fed a modified AIN-93G diet supplemented with LAG (100 mg/kg/day) for 5 days before and 4 weeks after being subjected to BCCAO. Four weeks after BCCAO, the pupillary light reflex (PLR) was measured to assess functional consequences of injury in the corpus callosum (cc). Additionally, Luxol fast blue staining and immunohistochemical staining were conducted to assess white matter injury, and astrocytic and microglial activation, respectively. RESULTS: We showed that white matter injury in the the cc and optic tract (opt) was attenuated in rats fed diet supplemented with LAG. Functional consequences of injury reduction in the opt manifested as improved PLR. Overall, these findings indicate that LAG intake protects against white matter injury through inhibition of glial activation. CONCLUSIONS: The results of this study support our hypothesis that cell wall polysaccharides consisting of arabinose are effective at protecting white matter injury, regardless of their origin. Moreover, LAG has the potential for development as a functional food to prevent vascular dementia.

The Effect of the Salvia miltiorrhiza on Axon Regeneration Following Central Nervous System Injury (단삼(丹蔘)이 손상된 뇌신경세포에 미치는 영향)

  • Shim, Ha-Na;Seong, Kee-Moon;Moon, Seong-Jin;Lee, Seung-Hee;Yang, Jae-Hoon;Song, Bong-Keun
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Object: Reactive gliosis that is induced by central nervous system (CNS) injury is involved with up-regulation of CD81 and GFAP. The present study was to examine the effect of the Salvia miltiorrhiza on CD81 and GFAP regulation following brain injury. Methods: Immunoblot and ELISA methods were used to define the level of CD81 and GFAP in the astrocyte cultured from rat brain. Then immunohistochemistry was used to detect CD81 and GFAP in the injured rat brain. Results: The following results were obtained. 1. We did western blot and ELISA to detect the protein isolated from the whole cell and they showed that CD81 and GFAP decreased. 2. We injected Salvia miltiorrhiza extract intravenously to brain-injured rats for 7 days and 30 days, and the immunohistochemistry analyses showed that CD81 and GFAP decreased significantly. Conclusion: These results indicate that Salvia miltiorrhiza could suppress the reactive gliosis, which disturbs the neural regeneration following CNS injury, by controlling the expression of CD81 and GFAP.

  • PDF

The effect of erythropoietin in neonatal rat model of hypoxic-ischemic brain injury (Erythropoietin의 투여가 신생백서 저산소허혈뇌손상에 미치는 영향)

  • Kim, Heng-Mi;Choe, Byung-Ho;Kwon, Soon-Hak;Sohn, Yoon-Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • Purpose : Perinatal asphyxia is an important cause of neonatal mortality and subsequent lifelong neurodevelopmental handicaps. Although many treatment strategies have been tested, there is currently no clinically effective treatment to prevent or reduce the harmful effects of hypoxia and ischemia in humans. Erythropoietin (Epo) has been shown to exert neuroprotective effects in various brain injury models although the exact mechanisms through which Epo functions are not completely understood. This study investigates the effect of Epo on hypoxic-ischemic (HI) brain injury and the possibility that its neuroprotective actions may be associated with iron-mediated metabolism. Methods : HI brain injury was produced in 7-day-old rats by unilateral carotid artery ligation followed by hypoxia with 8% oxygen for 2 h. At the end of HI brain injury, the rats received an intraperitoneal injection of 5,000 units/kg erythropoietin. Random premedication with iron, deferoxamine, iron-deferoxamine, or saline were performed 23 d before HI brain injury. The severity of the brain injury was assessed at 7 d after HI. Results : Single Epo treatment post-HI brain injury reduced the gross and histopathological findings of brain injury. Iron premedication did not increase the incidence or severity of the injury as measured by the damage score. Deferoxamine administration before HI brain injury improved the brain injury as compared to no treatment or Epo treatment. Conclusion : These findings indicate that Epo provides neuroprotective benefits after HI in the developing brain. These findings suggest that Epos neuroprotective actions may involve reducing iron in tissues that mediate the formation of free radicals.