• Title/Summary/Keyword: rat astrocytes

Search Result 89, Processing Time 0.022 seconds

Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells

  • Kim, Shi-Yeon;Min, Kyoung-Jin;Joe, Eun-Hye;Min, Do-Sik
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.74-79
    • /
    • 2004
  • Little is known about the effect of epigallocatechin-3 gallate (ESCG), a major constituent of green tea, on the expression of cyclooxygenase (COX)-2. Here, we studied the role of phospholipase D (PLD) isozymes in EGCG-induced COX-2 expression. Stimulation of human astrocytoma cells (U87) with EGCG induced formation of phosphatidylbutanol, a specific product of PLD activity, and synthesis of COX-2protein and its product, prostaglandin $E_2$ ($PGE_2$). Pretreatment of cells with 1-butanol, but not 3-butanol, suppressed EGCG-induced COX-2 expression and $PGE_2$ synthesis. Furthermore, evidence that PLD was involved in EGCG-induced COX-2 expression w3s provided by the observations that COX-2 expression was stimulated by over-expression of PLD1 or PLD2 isozymes and treatment with phosphatidic acid(PA), and that prevention of PA dephosphorylation by 1-propranolol significantly potentiated COX-2expression Induced by EGCG. EGCG induced activation of p38 mitogen-activated protein kinase (p38MAPK), and specific Inhibition of p38 MAPK dramatically abolished EGCG-Induced PLD activation, COX-2 expression, and $PGE_2$ formation. Moreover, protein kinase C (PKC) inhibition suppressed EGCG-induced p38 MAPK activation, COX-2 expression, and $PGE_2$ accumulation. The same pathways as those obtained in the astrocytoma cells were active in primary rat astrocytes, suggesting the relevance of the findings. Collectively, our results demonstrate for the first time that PLD isozymes mediate EGCG-induced COX-2 expression through PKC and p38 in immortalized astroglial line and normal astrocyte cells.

  • PDF

Effect of Cytokines on the Growth and Differentiation of the Glial Cells from Rat Brain in Culture (랫트 배양 신경교세포의 성장 및 분화에 대한 Cytokine의 효과)

  • Kim, Hae-Kyoung;Youn, Yong-Ha;Kang, Shin-Chung;Park, Chan-Woong;Kim, Yong-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.177-188
    • /
    • 1996
  • The effects of cytokines on the growth and differentiation of glial cells in culture were evaluated to confirm that cytokines could modify the number and function of glial cells. Proliferation of glial cells was determined by the $^3H-thymidine$ uptake and the double immunostain with anti-cell specific marker and anti-bromodeoxyuridine(BrdU) antibody. To check the effect on the differentiation of glial cells, the amount of glial fibrillar acidic protein(GFAP) and the activity of glutamine synthetase(GS) were measured in astrocytes. And also the amounts of myelin basic protein(MBP) and the activity of 2',3'-cyclic nucleotide phosphohydrolase(CNPase) were measured in oligodendrocytes. Among the cytokines used, only interleukin-$1{\beta}(IL-1{\beta})$ stimulated the growth of type 1 and type 2 astrocyte as well as 0-2A precursor cell. When the functional changes in these glial cells by cytokines were tested, $IL-1{\beta}$ did not increase GFAP content in type 1 and type 2 astrocyte, but $IL-1{\beta}$ increased GS activity in type 1 astrocyte, and slightly decreased this enzyme activity in type 2 astrocyte. Also interleukin-2(IL-2) and $interferon-{\gamma}$ $(IFN-{\gamma})$ inhibited the activity of GS in type 1 and type 2 astrocyte. On the other hand, all cytokines used did not modify the growth and differentiation in oligodendrocytes. From these results we could suggest that $IL-1{\beta}$ increases the growth of type 1 and type 2 astrocyte and also promotes the development for 0-2A precursor cell to type 2 astrocyte.

  • PDF

The Effect of the Uncariae Ramulus et Uncus on the Regeneration Following CNS Injury (중추신경계 손상 회복에 미치는 대한 조구등의 영향)

  • Lee, Jin-Goo;Park, Hyoung-Jin;Kim, Dong-Woong;Song, Bong-Keun
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • Objective : Following central nervous system(CNS) injury, inhibitory influences at the site of axonal damage occur. Glial cells become reactive and form a glial scar, gliosis. Also myelin debris such as MAG inhibits axonal regeneration. Astrocyte-rich gliosis relates with up-regulation of GFAP and CD81, and eventually becomes physical and mechanical barrier to axonal regeneration. MAG is one of several endogenous axon regeneration inhibitors that limit recovery from CNS injury and disease. It was reported that molecules that block such inhibitors enhanced axon regeneration and functional recovery. Recently it was reported that treatment with anti-CD81 antibodies enhanced functional recovery in the rat with spinal cord injury. So in this current study, the author investigated the effect of the water extract of Uncariae Ramulus et Uncus on the regulation of CD81, GFAP and MAG that increase when gliosis occurs. Methods : MTT assay was performed to examine cell viability, and cell-based ELISA, western blot and PCR were used to detect the expression of CD81, GFAP and MAG. Then also immunohistochemistry was performed to confirm in vivo. Results : Water extract of Uncariae Ramulus et Uncus showed relatively high cell viability at the concentration of 0.05%, 0.1% and 0.5%. The expression of CD81, GFAP and MAG in astrocytes was decreased after the administration of Uncariae Ramulus et Uncus water extract. These results was confirmed in the brain sections following cortical stab injury by immunohistochemistry. Conclusion : The authors observed that Uncariae Ramulus et Uncus significantly down-regulates the expression of CD81, GFAP and MAG. These results suggest that Uncariae Ramulus et Uncus can be a candidate to regenerate CNS injury.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

  • Zhu, Lirong;Huang, Yangliang;Hu, Yuming;Tang, Qian;Zhong, Yi
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2021
  • Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods: An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.

Neuroprotective effect of modify Bo-Yang-Hwan-O-Tang on global ischemia in rat (전뇌 허혈성 흰쥐 모델에서 mBHT의 신경보호효과 연구)

  • Oh, Tae-Woo;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Objectives : Modified Bo-Yang-Hwan-O-Tang (mBHT) is a polyherbal medicine of twelve herbs traditionally used in the treatment of cerebral and cardiac stroke and vascular dementia. The purpose of this study was to evaluate the neuroprotective effect, pyramidal neuronal cell, inflammation and apoptosis of mBHT against global ischemia in rats. Methods : Global ischemia was produced by two-vessel occlusion(2-VO) in SD male rats. mBHT at dose of 500 mg/kg was orally administrated for 2 weeks or 6 weeks after global ischemia. The histopathological changes of ischemic brain were observed by staining of hematoxylin and eosin (H&E) and Nissl and immunohistochemisty with anti-GFAP (glial fibrillary acidic protein) antibody as a astrocyte marker. The expression of inducible nitric oxide synthase (iNOS) and apoptotic proteins such as Bax, Bcl-2 and caspase-3 was determined by western blot. Results : mBHT treatment significantly inhibited the pyramidal neuronal loss in CA1 of hippocampus of global ischemic rats by 2-VO. mBHT also suppressed the activation of astrocytes in the CA1 at 6 weeks after ischemia. In addition, mBHT significantly increased the expression of anti-apoptotic protein, Bcl-2 on iscemic brain, and significantly attenuated the expression of apoptotic proteins, Bax and caspase-3. Conclusions : These results indicate that mBHT inhibits neuronal cell damage induced in global ischemia by 2-VO, suggesting that mBHT may be a potential candidate for the treatment of vascular dementia.

Differential Expressions of Gap Junction Proteins during Differentiation of Rat Neuronal Stem Cells

  • Yang, Se-Ran;Cho, Sung-Dae;Ahn, Nam-Shik;Jung, Ji-Won;Park, Joon-Suk;Tiep, Nguyen Ba;Park, Ki-Su;Hong, In-Sun;Jo, Eun-Hye;Seo, Min-Seo;Yoon, Byong-Su;Lee, Yong-Soon;Kang, Kyung-Sun
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.11-15
    • /
    • 2003
  • Gap junctional intercellular communication (GJIC) plays a key role during development, process of tissue differentiation, and in maintenance of adult tissue homeostasis. Neural stem cells leading to formation of cell clusters termed 'neurospheres', can differentiate into neurons, oligodendrocytes, and astrocytes. We investigated the expression levels and distribution of connexin43 (Cx43) and connexin32 (Cx32), abundant gap junctional protein in neural cells and in neurospheres isolated from rat fetus embryonic day (ED) 17. During differentiation of neurospheres, expression of Cx43 and 32 were increased time-dependently within 72 h, and then decreased at 7 day in western blot analysis. TPA-induced inhibition of GJIC was confirmed by decreased fluorescence by SL/DT assay, and induced hyperphosphorylation of Cx43 while no changes in Cx32 levels in western blot assay. Our results indicate that GJIC may be a crucial role in the differentiation of neuronal stem cell. And this GJIC can be inhibited by TPA through the hyperphosphorylation of Cx43.

  • PDF

Neuroglial Reaction in the Substantia Nigra and Striatum of 6-Hydroxydopamine Induced Parkinson's Disease Rat Model (흰쥐 흑질내 수산화도파민 주입으로 유도된 파킨슨병 모델에서 흑질과 선조체의 신경교세포 반응)

  • Yang, Kyung Won;Sung, Jae Hoon;Kim, Moon Chan;Lee, Moon Yong;Lee, Sang Won;Choi, Seung Jin;Park, Choon Keun;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.6
    • /
    • pp.688-698
    • /
    • 2001
  • Objectives : Parkinson's disease is a well-known neurodegenerative disease characterized by dopaminergic cell death in the substantia nigra. The reactive gliosis by activated astrocytes and microglias is no more regarded as a simple sequel of neuronal cell death. Microglial activation takes place in a stereotypic pattern with graded morphologic and functional(resting, activated and phagocytic) changes. In Parkinson's disease animal model, the degree of microglial activation along the nigro-striatal dopaminergic tract has not been studied intensively. The purpose of this study was to elucidate the characteristics of microglial reaction and to grade its degree of activation at substantia nigra and corpus striatum using 6-hydroxydopamine induced rat model of Parkinson's disease. Methods : Using Sprague-Dawley rat, parkinsonian model was made by 6-hydroxydopamine(OHDA) induced destruction of medial and lateral substantia nigra(SN). The rat was sacrificed 3-, 5-, 7-, 14- and 21-day-after operation. For control group, we injected saline with same manner and sacrificed 3-day after operation. With immunohistochemistry, we examined dopaminergic neuronal cells and microglial expression using tyrosine hydroxylase (TH) and OX-42 antibodies, respectively. Also we performed in situ hybridization for osteopontin, a possible marker of subset in activated microglia. Results : 1) In lesioned side of substantia nigra and corpus striatum, the TH immunoreactivity was markedly decreased in whole experimental groups. 2) Using optical densitometry, microglia induced immunoreactivity of OX-42 was counted at SN and corpus striatum. At SN, it was increased significantly on the lesioned side in control and all time-dependent experimental groups. At striatum, it was increased significantly in post lesion 3-day group only(p <0.05). Compared to control group, immunoreactivity of OX-42 on lesioned side was increased in groups, except post lesion 21-day group, at SN. Only post lesion 3-day group showed significance at striatum(p <0.05). Compared to SN region, immunoreactivity of OX-42 was much weaker in striatum. 3) Microscopically, the microglias showed typically different activation pattern. At SN, numerous phagocytic microglias were found at pars compacta and reticularis of lesion side. At striatum, no phagocytic form was found and the intensity of staining was much weaker. 4) At SN, the immunoreactivity of osteopontin showed definite laterality and it was markedly increased at pars compacta of lesion side with relatively short duration time. At striatum, however, it was not detected by in situ hybridization technique. Conclusion : The nigral 6-OHDA induced rat model of Parkinson's disease revealed several characteristic patterns of microglial reaction. At SN, microglias was activated shortly after direct neuronal damage and maintained for about three weeks. In contrast, despite of sufficient dopaminergic insufficiency at striatum, activation of microglias was trivial, and distinguished 3 day later. Antegrade slow neuronal degeneration is major pathophysiology in striatal dopaminergic deficiency. So, the acuteness of neuronal damage and consequential degree of neuronal degeneration may be important factor for microglial activation in neurodegenerative diseases such as Parkinson's disease. Additionally, osteopontin may be a possible marker for several subsets of activated microglia, possibly the phagocytic form.

  • PDF

Effects of Coptidis Rhizoma on the Anti-inflammation and Motor Recovery in Photothrombotic Brain Infarction Model in Rats (광화학적 뇌경색 백서 모델에서 황련의 항염증 및 운동기능 회복에 미치는 효과)

  • Lee, Su-Kyung;Lee, In;Shin, Sun-Ho;Kim, Eun-Young;Shin, Byung-Cheul
    • The Korea Journal of Herbology
    • /
    • v.24 no.1
    • /
    • pp.179-189
    • /
    • 2009
  • Objectives : Coptidis Rhizoma (Coptis japonica MAKINO; CR) is a well known crude drug as antimicrobial, antibacterial, anti-inflammatory, antioxidant activity. However, there is no study of the effect of CR on brain infarction and it's mechanism. The aim of this study was to investigate the effects on ischemic stroke induced by photothrombotic infarction by evaluating the functional & neuronal recovery after brain infarction. Materials & Methods : Male Sprague-Dawley rats (250-300 g) were induced photothrombotic brain infarction on sensorimotor cortex, and brain infarction volume by image J software (NIH, USA) after Nissl stain, also single pellet reaching task as a functional motor recovery were observed. After orally pretreated by CR (500 mg/kg) or normal saline as a sham control before 7 days from the time of photothrombotic infarction, rats were sacrificed. After then we analysed anti-inflammatory cytokines (TNF-$\alpha$, IL-6, IL-1$\beta$), by RT-PCR and ELISA method, and immunohistochemistry (GFAP, connexin-43) as a marker of neural plasticity. Results : CR (100, 250, 500 mg/kg) decreased the infarction volume dose-dependently, however the effect of 500mg/kg of CR (CR 500) showed the best (P=0.051). Also, CR 500 decreased the infarction volume time-dependently, the most effective time was 3-7 days after stroke. Photothrombosis increased inflammatory cytokines after infarction, CR 500 suppressed significantly mRNA expression of IL-1$\beta$, IL-6 and TNF-$\alpha$. In serum, CR 500 decreased the amount of IL-1$\beta$, 12h, 24h and 48h respectively (p < 0.05), also decreased that of IL-6 and TNF-$\alpha$, 12h respectively (p < 0.05) after infarction. The more astrocytes were observed and neural plasticity was facilitated in the rat brain of CR 500 than that of sham control in immunohistochemistry. Conclusions : This results suggest that CR decrease infarction volume and improve functional motor recovery in acute stage in photothrombotic ischemic infarction model in the mechanism of anti-inflammation and promoting neural plasticity.

Expression of nitric oxide synthase isoforms and N-methyl-D-aspartate receptor subunits according to transforming growth factor-β1 administration after hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저산소 허혈 뇌손상에서 Transforming Growth Factor-β1 투여에 따른 Nitric Oxide Synthase 이성체와 N-methyl-D-aspartate 수용체 아단위의 발현)

  • Go, Hye Young;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.594-602
    • /
    • 2009
  • Purpose : Transforming growth factor (TGF)-${\beta}1$ reportedly increases neuronal survival by inhibiting the induction of inducible nitric oxide synthase (NOS) in astrocytes and protecting neurons after excitotoxic injury. However, the neuroprotective mechanism of $TGF-{\beta}1$ on hypoxic-ischemic (HI) brain injury in neonatal rats is not clear. The aim of this study was to determine whether $TGF-{\beta}1$ has neuroprotective effects via a NO-mediated mechanism and N-methyl-D-aspartate (NMDA) receptor modulation on perinatal HI brain injury. Methods : Cortical cells were cultured using 19-day-pregnant Sprague-Dawley (SD) rats treated with $TGF-{\beta}1$ (1, 5, or 10 ng/mL) and incubated in a 1% O2 incubator for hypoxia. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 h of hypoxic exposure (7.5% $O_2$). $TGF-{\beta}1$ (0.5 ng/kg) was administered intracerebrally to the rats 30 min before HI brain injury. The expressions of NOS and NMDA receptors were measured. Results : In the in vitro model, the expressions of endothelial NOS (eNOS) and neuronal NOS (nNOS) increased in the hypoxic group and decreased in the 1 ng/mL $TGF-{\beta}1-treated$ group. In the in vivo model, the expression of inducible NOS (iNOS) decreased in the hypoxia group and increased in the $TGF-{\beta}1$-treated group. The expressions of eNOS and nNOS were reversed compared with the expression of iNOS. The expressions of all NMDA receptor subunits decreased in hypoxia group and increased in the $TGF-{\beta}1$-treated group except NR2C. Conclusion : The administration of $TGF-{\beta}1$ could significantly protect against perinatal HI brain injury via some parts of the NO-mediated or excitotoxic mechanism.