• Title/Summary/Keyword: rare-earth metals

Search Result 80, Processing Time 0.024 seconds

A book review; "Rare earth elements in human and environmental health; at the crossroads between toxicity and safety"

  • Rim, Kyung-Taek
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.207-211
    • /
    • 2017
  • It is introduced an outstanding book about an important topic in occupational and environmental sciences i.e., the opportunities and challenges that may be connected with increasing the use and distribution of rare earth elements. These chemically similar elements, comprising the lanthanides, scandium, and yttrium, are involved in a number of essential technological applications, and their effects raise a number of human health issues of relevance to the occupational and environmental sciences. The book that I introduced here, "Rare Earth Elements in Human and Environmental Health; At the Crossroads between Toxicity and Safety" edited by Giovanni Pagano (Pan Stanford Publishing Pte. Ltd., Temasek Boulevard, Singapore) represents a break from that situation. It is essential to increase our knowledge about the environmental fate and biological effects of these technologically important metals in order to prevent unforeseen long-term man-made consequences to human health. This book is likely to become an important resource for scientists, engineers, and decision makers who understand the need for sensible exploitation of this resource.

A Preliminary Geochemical Study on the Khaldzan-Buregtei Pegmatite, Western Mongolia (몽골 서부 할잔-부룩테이 페그마타이트에 대한 지화학적 예비 연구)

  • Pak, Sang-Joon;Heo, Chul-Ho;Kim, You-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.261-269
    • /
    • 2008
  • A NYF-type (Nb-Y-Zr-F) Khaldzan-Buregtei pegmatite containing rare-earth metals occurs within alkali granitoid complex of the western Mongolia. The pegmatites are considered as differentiates of syenites and alkali feldpar granitic rocks, showing that their rare-earth element concentrations are enriched tens times higher than those from the adjacent alkali granitic rocks. It is suggested that econemic aspects of the pegmatites can be controlled by the magnitude of lateral and vertical extensions and local grade variation of REE-bearing pegmatites.

Rare Metal Contents and Their Implications of Seabed Mineral Resources Explored by Korea (한국이 탐사 중인 해저광물자원의 희유금속 함량과 의미)

  • Pak, Sang-Joon;Moon, Jai-Woon;Lee, Kyeong-Yong;Chi, Sang-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.455-466
    • /
    • 2010
  • Seabed mineral resources explored by Korea are categorized into major three types of deposit; manganese nodule, manganese crust and polymetallic sulfides. Pt displays high enrichment factors (400, ore/crust ratios) in manganese nodule. Rare earth oxide content in manganese nodule ranges from 0.037 to 0.302 REO % with mean value of 0.12 REO %. Both of Te and Pt are enriched elements in manganese crust, displaying enrichment factors of 10800 and 150, respectively. Rare earth oxide's contents of manganese crust are slightly higher than manganese nodule's (0.013~0.387 REO %, average = 0.18 REO %). Se and In are outstanding rare metals from seabed polymetallic sulfides, showing enrichment factors of 1300 and 110, respectively. Au (0.8~26.3 g/t) and Ag (0.9~348.0 g/t) are another enriched elements in polymetallic sulfides. The main concern at exploiting seabed mineral resource will be a securing rare metals for high-technology industries and rare metals from subsea mineral deposits will add economic values to commodity candidates such like Co, Ni and Cu.

Actinide Drawdown From LiCl-KCl Eutectic Salt via Galvanic/chemical Reactions Using Rare Earth Metals

  • Yoon, Dalsung;Paek, Seungwoo;Jang, Jun-Hyuk;Shim, Joonbo;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.373-382
    • /
    • 2020
  • This study proposes a method of separating uranium (U) and minor actinides from rare earth (RE) elements in the LiCl-KCl salt system. Several RE metals were used to reduce UCl3 and MgCl2 from the eutectic LiCl-KCl salt systems. Five experiments were performed on drawdown U and plutonium (Pu) surrogate elements from RECl3-enriched LiCl-KCl salt systems at 773 K. Via the introduction of RE metals into the salt system, it was observed that the UCl3 concentration can be lowered below 100 ppm. In addition, UCl3 was reduced into a powdery form that easily settled at the bottom and was successfully collected by a salt distillation operation. When the RE metals come into contact with a metallic structure, a galvanic interaction occurs dominantly, seemingly accelerating the U recovery reaction. These results elucidate the development of an effective and simple process that selectively removes actinides from electrorefining salt, thus contributing to the minimization of the influx of actinides into the nuclear fuel waste stream.

Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash

  • Malikov, Sh.R.;Pikul, V.P.;Mukhamedshina, N.M.;Sandalov, V.N.;Kudiratov, S.;Ibragimova, E.M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • Coal ash is known to contain a noticeable amount of valuable elements, including transition metals and lanthanides. Therefore it is quite actual problem to extract them for metallurgy and other applications. This paper presents the results of high gradient magnetic and mechanical separation, microscopy, element analyses and optical spectroscopy of brown coal ash taken from the combustion camera and chimney-stalk of Angren thermal power station. The separated magnetic fraction was 3.4 wt.%, where the content of Fe in ferrospheres increased to 58 wt.%. The highest contents of Fe and rare earth elements were found in the fine fractions of $50-100{\mu}m$. Optical absorption spectroscopy of water solutions of the magnetic fractions revealed $Fe^{2+}$ and $Fe^{3+}$ ions in the ratio of ~1:1. The separated coal ash could be used for cleaning of technological liquid waste by means of the high gradient magnetic field.

Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor (회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In recent years, permanent magnets such as IPM (Interior Permanent Magnet) motors or SPM (Surface Permanent Magnet) motors that can obtain high efficiency and power density by inserting rare earth permanent magnets into the rotor are used. Research on the used electric motor is being actively conducted. Since it uses a permanent magnet, it has the advantage of high efficiency and high power density compared to reluctance motors and induction motors, but by inserting a permanent magnet into the rotor, it operates at high speeds and decreases reliability due to demagnetization of the permanent magnets, and increases the cost of rare earth metals. In this paper, in accordance with the development of future technology that can replace rare-earth permanent magnet motors and technological preoccupation of rare-earth reduction type motors and de-rare-earth motors, switched reluctance motors that do not require permanent magnets (Switched Reluvtance Motors) Motor, SRM) to drive driving control. Using the 3-phase SRM library provided by the PSIM simulation program, we will study the driving and control system modeling of SRM using the rotor position information sensor.

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.