This paper presents a method for autonomous exploration of indoor environments using a 2-dimensional Light Detection And Ranging (LiDAR) scanner. The proposed frontier-based exploration method considers navigability from the current robot position to extracted frontier targets. An approach to constructing the point cloud grid map that accurately reflects the occupancy probability of glass obstacles is proposed, enabling identification of safe frontier grids on the safety grid map calculated from the point cloud grid map. Navigability, indicating whether the robot can successfully navigate to each frontier target, is calculated by applying the skeletonization-informed rapidly exploring random tree algorithm to the safety grid map. While conventional exploration approaches have focused on frontier detection and target position/direction decision, the proposed method discusses a safe navigation approach for the overall exploration process until the completion of mapping. Real-world experiments have been conducted to verify that the proposed method leads the robot to avoid glass obstacles and safely navigate the entire environment, constructing the point cloud map and calculating the navigability with low computing time deviation.
KIPS Transactions on Software and Data Engineering
/
v.5
no.12
/
pp.653-662
/
2016
This paper describes a test case generation algorithm for Simulink/Stateflow models based on the Rapidly exploring Random Tree (RRT) algorithm that has been successfully applied to path finding. An important factor influencing the performance of the RRT algorithm is the metric used for calculating the distance between the nodes in the RRT space. Since a test case for a Simulink/Stateflow (SL/SF) model is an input sequence to check a specific condition (called a test target in this paper) at a specific status of the model, it is necessary to drive the model to the status before checking the condition. A status maps to a node of the RRT. It is usually necessary to check various conditions at a specific status. For example, when the specific status represents an SL/SF model state from which multiple transitions are made, we must check multiple conditions to measure the transition coverage. We propose a unique distance calculation metric, based on the observation that the test targets are gathered around some specific status such as an SL/SF state, named key nodes in this paper. The proposed metric increases the probability that an RRT is extended from key nodes by imposing penalties to non-key nodes. A test case generation algorithm utilizing the proposed metric is proposed. Three models of Electrical Control Units (ECUs) embedded in a commercial vehicle are used for the performance evaluation. The performances are evaluated in terms of penalties and compared with those of the algorithm using a typical RRT algorithm.
Journal of the Korean Society for Aviation and Aeronautics
/
v.27
no.2
/
pp.1-8
/
2019
Optimal path planning refers to find the safe route to the destination at a low cost, is a major problem with regard to autonomous navigation. Sampling Based Planning(SBP) approaches, such as Rapidly-exploring Random Tree Star($RRT^*$), are the most influential algorithm in path planning due to their relatively small calculations and scalability to high-dimensional problems. $RRT^*$-Smart introduced path optimization and biased sampling techniques into $RRT^*$ to increase convergent rate. This paper presents an improvement plan that has changed the biased sampling method to increase the initial convergent rate of the $RRT^*$-Smart, which is specified as m$RRT^*$-Smart. With comparison among $RRT^*$, $RRT^*$-Smart and m$RRT^*$-Smart in 2 & 3-D environments, m$RRT^*$-Smart showed similar or increased initial convergent rate than $RRT^*$ and $RRT^*$-Smart.
KIPS Transactions on Software and Data Engineering
/
v.2
no.7
/
pp.471-478
/
2013
This paper proposes a black-box based test case generation method for Simulink/Stateflow model utilizing the RRT algorithm which is a method to efficiently solve the path planning for complicated systems. The proposed method in the paper tries to solve the reachability problem with the RRT algorithm, which has to be solved for black-box based test case generations. A major problem of the RRT based test case generation algorithms is that the cost such as running time and required memory size is too much for complicated Stateflow model. The typical RRT algorithm expands rapidly-exploring random tree (RRT) in a single state space. But the proposed method expands it in dynamic state space based on the state of Simulink model, consequently reducing the cost. In the paper, a new definition of RRT state space, a distance measure and a test case generation algorithm are proposed. The performance of proposed method is verified through the experiment against Stateflow model.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.7
no.2
/
pp.138-142
/
2007
This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the: given environment. The suggested method is applied to the control of $KUKA^{TM}$, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of $MatLab^{TM}\;and\;RecurDyn^{TM}$.
Journal of Institute of Control, Robotics and Systems
/
v.22
no.3
/
pp.217-225
/
2016
In this paper, we propose an improved path planning method and obstacle avoidance algorithm for two-wheel mobile robots, which can be effectively applied in an environment where obstacles can be represented by circles. Firstly, we briefly introduce the rapidly exploring random tree (RRT) and single polar polynomial (SPP) algorithm. Secondly, we present additional two methods for applying our proposed method. Thirdly, we propose a global path planning, smoothing and obstacle avoidance method that combines the RRT and SPP algorithms. Finally, we present a simulation using our proposed method and check the feasibility. This shows that proposed method is better than existing methods in terms of the optimality of the trajectory and the satisfaction of the kinematic constraints.
Journal of the Korea Institute of Military Science and Technology
/
v.20
no.6
/
pp.803-812
/
2017
This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.
Sampling-based algorithms are one of the most commonly approaches which give good results in robot path planning with many degree of freedom. So that many proposed methods as well as their improvement based on these approaches have been proposed. The purpose of this paper is to survey some current algorithms using for path planning, the original proposed methods as well as their improvement. Some advantages and disadvantages of these algorithms will be also mentioned, how the improved version of the proposed methods overcome the original proposed methods' drawback.
This study presents a novel safe landing algorithm for urban drone deliveries. The rapid advancement of drone technology has given rise to various delivery services for everyday necessities and emergency relief efforts. However, the reliability of drone delivery technology is still insufficient for application in urban environments. The proposed approach uses the "landing angle control" method to allow the drone to land vertically and a rapidly exploring random tree-based collision avoidance algorithm to generate safe and efficient vertical landing paths for drones while avoiding common urban obstacles like trees, street lights, utility poles, and wires; these methods allow for precise and reliable urban drone delivery. We verified the approach within a Gazebo simulation operated through ROS using a six-degree-of-freedom drone model and sensors with similar specifications to actual models. The performance of the algorithms was tested in various scenarios by comparing it with that of stateof-the-art 3D path planning algorithms.
Kim, Minsoo;Ahn, Joonwoo;Kim, Minsung;Shin, Minyong;Park, Jaeheung
The Journal of Korea Robotics Society
/
v.16
no.3
/
pp.250-259
/
2021
Path planning is one of the important technologies for automated parking. It requires to plan a collision-free path considering the vehicle's kinematic constraints such as minimum turning radius or steering velocity. In a complex parking lot, Rapidly-exploring Random Tree* (RRT*) can be used for planning a parking path, and Reeds-Shepp or Hybrid Curvature can be applied as a tree-extension method to consider the vehicle's constraints. In this case, each of these methods may affect the computation time of planning the parking path, path-tracking error, and parking success rate. Therefore, in this study, we conduct comparative analysis of two tree-extension functions: Reeds-Shepp (RS) and Hybrid Curvature (HC), and show that HC is a more appropriate tree-extension function for parking path planning. The differences between the two functions are introduced, and their performances are compared by applying them with RRT*. They are tested at various parking scenarios in simulation, and their advantages and disadvantages are discussed by computation time, cross-track error while tracking the path, parking success rate, and alignment error at the target parking spot. These results show that HC generates the parking path that an autonomous vehicle can track without collisions and HC allows the vehicle to park with lower alignment error than those of RS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.