• Title/Summary/Keyword: rapid reading

Search Result 101, Processing Time 0.035 seconds

GENOME STRUCTURE OF Bombyx mori NUCLEOPOLYHEDROVIRUS

  • SUSUMU MAEDA
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 1997.06a
    • /
    • pp.73-101
    • /
    • 1997
  • Baculoviruses are characterized by large double-stranded circular DNA genomes and rod-shaped enveloped virions. Bombyx mori nucleopolyhedrovirus(BmNPV) is a major pathogen, which causes severe damage in sericulture. Currently, BmNPV is recogtnized as an improtant tool in molecular biology, especially for expression of useful genes in B.mori cells and silkworm larvae. Our laboratories have focused on the studies of the molecular mechanisms of BmNPV replication and the application of BmNPV to agriculture and medicine. The entire nucleotide sequence of the BmNPV genome has recently determined. The BmNPV genome possessed 135 putative genes and 7 homologous repeated sequence (hrs) regions. Relatively little space, a few to a few hundred base-pairs, was observed between the open reading frames and hrs. Termination codons often overlapped. These results showed a compactly packde BmNPV genome. Based on comparative sequence analyses, we speculated that the ancestor of BmNPV was a baculovirus similar to Autographa californica NPV(AcNPV). The function of the BmNPV genes were characterized by gene deletion analysis; p35 was found to be involved in blocking apoptosis and cysteine proteinase was found to be involved in horizontal virus transmission by degrading viral-infected larval host. By AcNPV and BmNPV coinfection experiments, we identified a BmNPV gene involved in expanding host specificity of AcNPV. The identified gene was likely encoded a DNA helicase based on the amino acid sequence analysis; a few amino acid substitutions in the putative DNA helicase gene resulted in the expansion of host range of AcNPV. These findings indicate that BmNPV evolved within a short period from an AcNPV-like ancestral virus due to rapid evolution including specific amino acid substitutions and gene deletions/insertions.

Identification and Expression of Retroviral Envelope Polyprotein in the Dogfish Squalus mitsukurii

  • Kim, Soo Cheol;Sumi, Kanij Rukshana;Choe, Myeong Rak;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Determining the infection history of living organisms is essential for understanding the evolution of infection agents with their host, particularly for key aspects such as immunity. Viruses, which can spread between individuals and often cause disease, have been widely examined. The increasing availability of fish genome sequences has provided specific insights into the diversity and host distribution of retroviruses in fish. The shortspine spurdog (Squalus mitsukurii) is an important elasmobranch species; this medium-sized dogfish typically lives at depths of 100~500 m. However, the retroviral envelope polyprotein in dogfish has not been examined. Thus, the aim of the present study was to identify and analyze the retroviral envelope polyprotein in various tissues of dogfish. The 1334-base pair full-length novel cDNA of dogfish envelope polyprotein (dEnv) was obtained by 3' and 5'-rapid amplification of cDNA end analysis from S. mitsukurii. The open reading frame showed a complete coding sequence of 815 base pairs with a deduced peptide sequence of 183 amino acids that exhibited 34~50% identity with other fish and bird species. It was also expressed according to reverse transcription and real-time polymerase chain reaction in the kidney, liver, intestine, and lung, but not in the gill. This distribution can be assessed by identifying and analyzing endogenous retroviruses in fish, which consists of three main genes: gag, pol and env. Dogfish envelope polyprotein sequence is likely important in evolution and induces rearrangements, altering the regulatory and coding sequences. This is the first report of the identification and molecular characterization of retroviral envelope polyprotein in various tissues of S. mitsukurii.

Molecular cloning, identification, transcriptional analysis, and silencing of enolase on the life cycle of Haemaphysalis longicornis (Acari, Ixodidae) tick

  • Md. Samiul Haque;Md. Khalesur Rahman;Mohammad Saiful Islam;Myung-Jo You
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.2
    • /
    • pp.226-237
    • /
    • 2024
  • Ticks, blood-sucking ectoparasites, spread diseases to humans and animals. Haemaphysalis longicornis is a significant vector for tick-borne diseases in medical and veterinary contexts. Identifying protective antigens in H. longicornis for an anti-tick vaccine is a key tick control strategy. Enolase, a multifunctional protein, significantly converts D-2-phosphoglycerate and phosphoenolpyruvate in glycolysis and gluconeogenesis in cell cytoplasm. This study cloned a complete open reading frame (ORF) of enolase from the H. longicornis tick and characterized its transcriptional and silencing effect. We amplified the full-length cDNA of the enolase gene using rapid amplification of cDNA ends. The complete cDNA, with an ORF of 1,297 nucleotides, encoded a 432-amino acid polypeptide. Enolase of the Jeju strain H. longicornis exhibited the highest sequence similarity with H. flava (98%), followed by Dermacentor silvarum (82%). The enolase motifs identified included N-terminal and C-terminal regions, magnesium binding sites, and several phosphorylation sites. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that enolase mRNA transcripts were expressed across all developmental stages of ticks and organs such as salivary gland and midgut. RT-PCR showed higher transcript levels in syn-ganglia, suggesting that synganglion nerves influence enolase's role in tick salivary glands. We injected enolase double-stranded RNA into adult unfed female ticks, after which they were subsequently fed with normal unfed males until they spontaneously dropped off. RNA interference significantly (P<0.05) reduced feeding and reproduction, along with abnormalities in eggs (no embryos) and hatching. These findings suggest enolase is a promising target for future tick control strategies.

A COMPARATIVE STUDY ON AUDITORY ATTENTION AND PHONEME DIFFERENTIAL ABILITY AMONG CHILDREN WITH READING DISABILITY AND WITH ATTENTION DEFICIT/HYPERACTIVITY (읽기 장애와 주의력 결핍/과잉 운동 장애아동의 주의력 과제와 음소 변별 과제 수행 비교 - 청각 과제를 중심으로 -)

  • Lee, Kyung-Hee;Shin, Min-Sup;Kim, Boong-Nyun;Cho, Soo-Churl
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.14 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • Objective:In this study, we hypothesized that deficit in processing rapid linguistic stimuli is at the heart of Reading Disability(RD) and deficit in response inhibition is at the heart of Attention Deficit/Hyperactivity(ADHD). We conducted experiments to identify the core cognitive characteristics of children either with RD or with ADHD or with both, using attentional tasks and phoneme differential tests. Method:In the study 1, 28 children with ADHD, 16 children with RD+ADHD were individually administered visual/auditory performance tests. Then, the differences of performance on attentional tasks between two groups were compared while IQs of two groups were controlled. In the study 2, 13 children with RD+ADHD/RD, 13 children with ADHD, and 13 normal children were administered computerized phoneme differential tests. Result:Visual attentional tasks did not distinguish an ADHD group from a RD+ADHD group. With auditory attentional tasks, however, the comorbid group showed significantly more difficulties, causing a large variance in reaction time. RD, RD+ADHD, and ADHD groups showed more errors in phoneme differential tests than a normal control group, and each group showed distinctive performance patterns. Discussion:An ADHD group had difficulty in response inhibition and sustained attention, and children who also had RD along with ADHD magnified the auditory attentional difficulties. Even though children with RD had more trouble with responding correctly to target stimuli, their responses were not significantly different from those of children with ADHD.

  • PDF

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

The Antimicrobial Characteristics of McSSP-31 Purified from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus (참담치(Mytilus coruscus) 혈구(hemocyte)에서 분리한 McSSP-31의 항균 특성 분석)

  • Oh, Ryunkyoung;Lee, Min Jeong;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Joo-Won;Park, Jung-Youn;Seo, Jung-Kil;Kim, Dong-Gyun
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1276-1289
    • /
    • 2017
  • This study isolated and purified the antimicrobial peptide McSSP-31 from an acidified hemocyte extract of a Mytilus coruscus. The antimicrobial peptide was purified by using a $C_{18}$ reversed-phase high-performance liquid chromatography (HPLC). The peptide was determined to be 3330.549 Da by matrix assisted-laser desorption ionization time-of-flight mass spectrophotometer (MALDI-TOF/MS). The N-terminus of a 14 amino-acid sequence was identified as P-S-P-T-R-R-S-T-S-R-S-K-S-R by Edman degradation method. The acquired sequence showed a 93% similarity with the sperm-specific protein Phi-1, which is from M. californianus. The identified open-reading frame (ORF) of peptide was 306 bp encoding 101 amino acids, which was analyzed by rapid amplification of cDNA ends (RACE), cloning and sequencing analysis. We compared the full sequence with other known proteins that reveal the sperm-specific protein Phi-1 (93.5%) of M. californianus. Synthesized antimicrobial peptide (McSSP-31) showed antibacterial activity against gram-positive bacteria including B. subtilis, S. mutans, S. aureus and gram-negative bacteria including E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa and fungi, C. albicans. Also, synthesized peptide showed strong antibacterial activity against antibiotic-resistant strains, including S. aureus. The cytotoxicity of the peptide was determined by using the HUVEC human cell line. The peptide did not exhibit any significant cytotoxic effects on the normal human cell line, and it had very low hemolytic activity with flounder hemoglobin. The results demonstrated that peptide purified from the hemocyte of a M. coruscus exhibits antibacterial activity against various bacteria and has the potential to be an alternative antibiotic agent.

Molecular Cloning and Characterization of a New cDNA Encoding Hyoscyamine 6β-hydroxylase from Roots of Anisodus acutangulus

  • Kai, Guoyin;Chen, Junfeng;Li, Li;Zhou, Genyu;Zhou, Limin;Zhang, Lei;Chen, Yuhui;Zhao, Linxia
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.715-722
    • /
    • 2007
  • A new full-length cDNA encoding hyoscyamine $6\beta$-hydroxylase (designated as aah6h, GenBank Accession No. EF187826), which catalyzes the last committed step in the scopolamine biosynthetic pathway, was isolated from young roots of Anisodus acutangulus by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of aah6h was 1380 bp and contained a 1035 bp open reading frame (ORF) encoding a deduced protein of 344 amino acid residues. The deduced protein had an isoelectric point (pI) of 5.09 and a calculated molecular mass of about 38.7 kDa. Sequence analyses showed that AaH6H had high homology with other H6Hs isolated from some scopolamine-producing plants such as Hyoscyamus niger, Datura metel and Atropa belladonna etc. Bioinformatics analyses results indicated AaH6H belongs to 2-oxoglutarate-dependent dioxygenase superfamily. Phylogenetic tree analysis showed that AaH6H had closest relationship with H6H from A. tanguticus. Southern hybridization analysis of the genomic DNA revealed that aah6h belonged to a multi-copy gene family. Tissue expression pattern analysis firstly founded that aah6h expressed in all the tested tissues including roots, stems and leaves and indicated that aah6h was a constitutive-expression gene, which was the first reported tissue-independent h6h gene compared to other known h6h genes.

Characterization and Expression Profile Analysis of a New cDNA Encoding Taxadiene Synthase from Taxus media

  • Kai, Guoyin;Zhao, Lingxia;Zhang, Lei;Li, Zhugang;Guo, Binhui;Zhao, Dongli;Sun, Xiaofen;Miao, Zhiqi;Tang, Kexuan
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.668-675
    • /
    • 2005
  • A full-length cDNA encoding taxadiene synthase (designated as TmTXS), which catalyzes the first committed step in the Taxol biosynthetic pathway, was isolated from young leaves of Taxus media by rapid amplification of cDNA ends (RACE). The full-length cDNA of TmTXS had a 2586 bp open reading frame (ORF) encoding a protein of 862 amino acid residues. The deduced protein had isoelectric point (pI) of 5.32 and a calculated molecular weight of about 98 kDa, similar to previously cloned diterpene cyclases from other Taxus species such as T. brevifolia and T. chinenisis. Sequence comparison analysis showed that TmTXS had high similarity with other members of terpene synthase family of plant origin. Tissue expression pattern analysis revealed that TmTXS expressed strongly in leaves, weak in stems and no expression could be detected in fruits. This is the first report on the mRNA expression profile of genes encoding key enzymes involved in Taxol biosynthetic pathway in different tissues of Taxus plants. Phylogenetic tree analysis showed that TmTXS had closest relationship with taxadiene synthase from T. baccata followed by those from T. chinenisis and T. brevifolia. Expression profiles revealed by RT-PCR under different chemical elicitor treatments such as methyl jasmonate (MJ), silver nitrate (SN) and ammonium ceric sulphate (ACS) were also compared for the first time, and the results revealed that expression of TmTXS was all induced by the tested three treatments and the induction effect by MJ was the strongest, implying that TmTXS was high elicitor responsive.

A Study of the Impact of Portal News Use on Traditional Media: among College Students (포털 뉴스 이용이 전통 미디어 이용에 미치는 영향에 관한 연구: 대학생 집단을 중심으로)

  • Won, Suk-Kyoung;Kim, Dae-Kyung;Lee, Bum-Soo
    • Korean journal of communication and information
    • /
    • v.38
    • /
    • pp.40-72
    • /
    • 2007
  • Amid the rapid growth in use of portal news, this study examined whether portal news would substitute traditional news media, in particular newspapers and television news. To answer the research question, this study attempted to investigate how the decrease in use of traditional news media was associated with online news use, reliance on, and motivations for portal news. First, this study found that there was a negative and significant relationship between the Internet use and television news viewing, suggesting that those who are more likely to use the Internet are less likely to watch television news programs. Also, portal news was negatively associated with time spent with newspaper reading, while it was not related to television news viewing. Second, this study found that convenience/information-seeking needs appeared as the major motivations for using portal news, which were negatively and significantly associated with the decreased time spent with watching television news programs. In other words, those who used portal news for convenience/information-seeking needs are less likely to watch television news programs, which may indicate that portal news could be a substitute for television news in terms of convenience/information-seeking motivations. In addition, the result of this study showed that there was a complementary relationship between portal news and newspapers in terms of surveillance needs. Those findings could be explained by the concept of "functional similarity" in the process of media substitution. Based on the findings, implications of this study were discussed.

  • PDF

Molecular Cloning, Characterization and Functional Analysis of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba

  • Gao, Shi;Lin, Juan;Liu, Xuefen;Deng, Zhongxiang;Li, Yingjun;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.502-510
    • /
    • 2006
  • 2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase (MECPS, EC: 4.6.1.12) is the fifth enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and is involved in the methylerythritol phosphate (MEP) pathway for ginkgolide biosynthesis. The full-length mecps cDNA sequence (designated as Gbmecps) was cloned and characterized for the first time from gymnosperm plant species, Ginkgo biloba, using RACE (rapid amplification of cDNA ends) technique. The full-length cDNA of Gbmecps was 874 bp containing a 720 bp open reading frame (ORF) encoding a peptide of 239 amino acids with a calculated molecular mass of 26.03 kDa and an isoelectric point of 8.83. Comparative and bioinformatic analyses revealed that GbMECPS showed extensive homology with MECPSs from other species and contained conserved residues owned by the MECPS protein family. Phylogenetic analysis indicated that GbMECPS was more ancient than other plant MECPSs. Tissue expression pattern analysis indicated that GbMECPS expressed the highest in roots, followed by in leaves, and the lowest in seeds. The color complementation assay indicated that GbMECPS could accelerate the accumulation of $\beta$-carotene. The cloning, characterization and functional analysis of GbMECPS will be helpful to understand more about the role of MECPS involved in the ginkgolides biosynthesis at the molecular level.