• Title/Summary/Keyword: rapid object tracking

Search Result 24, Processing Time 0.026 seconds

Integral Histogram-based Framework for Rapid Object Tracking (고속 객체 검출을 위한 적분 히스토그램 기반 프레임워크)

  • Ko, Jaepil;Ahn, Jung-Ho;Hong, Won-Kee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2015
  • In this paper we propose a very rapid moving object tracking method for an object-based auto focus on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use a sliding-window detection technique based on histogram features. By adapting the integral histogram, we solve the problem of the time-consuming histogram computation on each sub-window. For more speed up, we propose a local candidate search, and an adaptive scaling template method. In addition, we propose to apply a stabilization term in the matching function for a stable detection location. In experiments on our dataset, we demonstrated that we achieved a very rapid tracking performance demonstrating over 100 frames per second on a PC environment.

A Fast Snake Algorithm for Tracking Multiple Objects

  • Fang, Hua;Kim, Jeong-Woo;Jang, Jong-Whan
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.519-530
    • /
    • 2011
  • A Snake is an active contour for representing object contours. Traditional snake algorithms are often used to represent the contour of a single object. However, if there is more than one object in the image, the snake model must be adaptive to determine the corresponding contour of each object. Also, the previous initialized snake contours risk getting the wrong results when tracking multiple objects in successive frames due to the weak topology changes. To overcome this problem, in this paper, we present a new snake method for efficiently tracking contours of multiple objects. Our proposed algorithm can provide a straightforward approach for snake contour rapid splitting and connection, which usually cannot be gracefully handled by traditional snakes. Experimental results of various test sequence images with multiple objects have shown good performance, which proves that the proposed method is both effective and accurate.

Rapid Local Modeling in Construction Automation

  • Kwon Soon-Wook
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.173-179
    • /
    • 2003
  • Techniques to rapidly model local spaces, using 3D range data can enable implementation of: (1) real-time obstacle avoidance for improved safety, (2) advanced automated equipment control modes, and (3) as-built data acquisition for improved quantity tracking, engineering, and project control systems. The objective of the research reported here was to introduce current rapid local modeling techniques and develop rapid local spatial modeling tools.

  • PDF

Detection and Blocking of a Face Area Using a Tracking Facility in Color Images (컬러 영상에서 추적 기능을 활용한 얼굴 영역 검출 및 차단)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.454-460
    • /
    • 2020
  • In recent years, the rapid increases in video distribution and viewing over the Internet have increased the risk of personal information exposure. In this paper, a method is proposed to robustly identify areas in images where a person's privacy is compromised and simultaneously blocking the object area by blurring it while rapidly tracking it using a prediction algorithm. With this method, the target object area is accurately identified using artificial neural network-based learning. The detected object area is then tracked using a location prediction algorithm and is continuously blocked by blurring it. Experimental results show that the proposed method effectively blocks private areas in images by blurring them, while at the same time tracking the target objects about 2.5% more accurately than another existing method. The proposed blocking method is expected to be useful in many applications, such as protection of personal information, video security, object tracking, etc.

Tiny Drone Tracking with a Moving Camera (동적 카메라 환경에서의 소형 드론 추적 방법)

  • Son, Sohee;Jeon, Jinwoo;Lee, Injae;Cha, Jihun;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.802-812
    • /
    • 2019
  • With the rapid development in the field of unmanned aerial vehicles(UAVs) and drones, higher request to development of a surveillance system for a drone is putting forward. Since surveillance systems with fixed cameras have a limited range, a development of surveillance systems with a moving camera applicable to PTZ(Pan-Tilt-Zoom) cameras is required. Selecting the features for object plays a critical role in tracking, and the object has to be represented by their shapes or appearances. Considering these conditions, in this paper, an object tracking method with optical flow is introduced to track a tiny drone with a moving camera. In addition, a tracking method combined with kalman filter is proposed to track continuously even when tracking is failed. Experiments are tested on sequences which have a target from the minimal 12 pixels to the maximal 56337 pixels, the proposed method achieves average precision of 175% improvement. Also, experimental results show the proposed method tracks a target which has a size of 12pixels.

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

Real-time Recognition and Tracking System of Multiple Moving Objects (다중 이동 객체의 실시간 인식 및 추적 시스템)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.421-427
    • /
    • 2011
  • The importance of the real-time object recognition and tracking field has been growing steadily due to rapid advancement in the computer vision applications industry. As is well known, the mean-shift algorithm is widely used in robust real-time object tracking systems. Since the mentioned algorithm is easy to implement and efficient in object tracking computation, many say it is suitable to be applied to real-time object tracking systems. However, one of the major drawbacks of this algorithm is that it always converges to a local mode, failing to perform well in a cluttered environment. In this paper, an Optical Flow-based algorithm which fits for real-time recognition of multiple moving objects is proposed. Also in the tests, the newly proposed method contributed to raising the similarity of multiple moving objects, the similarity was as high as 0.96, up 13.4% over that of the mean-shift algorithm. Meanwhile, the level of pixel errors from using the new method keenly decreased by more than 50% over that from applying the mean-shift algorithm. If the data processing speed in the video surveillance systems can be reduced further, owing to improved algorithms for faster moving object recognition and tracking functions, we will be able to expect much more efficient intelligent systems in this industrial arena.

A Study on the Smart Care System Using Real-time Object Tracking Technology (실시간 객체 추적 기술을 활용한 스마트 케어 시스템에 대한 연구)

  • Kim, HyeJeong;Kang, MinGu;Lee, HyeGyu;Ko, Dongbeom;Kim, JeongJoon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.243-250
    • /
    • 2018
  • This paper designs and implements a smart care system for the senior citizen who lives alone. Recently, as the level of living has increased due to the rapid improvement of medicine, living standard and environment, the proportion of the elderly population is increasing. In addition, the proportion of the elderly living alone, which is increasing with the aging society, suggests that the provision of services such as the elder care system and emergency notification is becoming an important issue. However, since the existing emergency notification technology analyzes fixed CCTV images, it is difficult to monitor in the blind spot of CCTV and to move to a place where the camera is not installed. There is a problem that it can not be performed. Therefore, in this paper, we design and develop a smart care system that utilizes robot and object tracking technology that can move in real time to overcome these shortcomings. This enables real-time monitoring regardless of the location, and prompts for assistance in case of an emergency, so that it can provide convenience to cares and assistants.

Improved Object Tracking using Surrounding Information Detection (주변정보 검출을 통한 개선된 객체추적 기법)

  • Cho, Chi-young;Kim, Soo-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1027-1030
    • /
    • 2013
  • For the detection of objects in the videos, there are various ways that use the frequency transformation. In the videos, the images of objects could be changed slightly. Object detection methods using frequency transformation such as ASEF and MOSSE have the ability to renew the detection filter in order to deal with the change of object images. But these approaches are likely to fail the detection because the image changes often occur when they come out again after being hidden by other objects. What is worse, when they show up again, they appear in another place, not the original one. In this paper, a new proposal is present so that the detection can be carried out efficiently even when the images come out in other place, and the failure of the detection can be reduced.

  • PDF

Implementation of Self-Adaptative System using Algorithm of Neural Network Learning Gain (신경회로망 학습이득 알고리즘을 이용한 자율적응 시스템 구현)

  • Lee, Sung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1868-1870
    • /
    • 2006
  • Neural network is used in many fields of control systems, but input-output patterns of a control system are not easy to be obtained and by using as single feedback neural network controller. And also it is difficult to get a satisfied performance when the changes of rapid load and disturbance are applied. To resolve those problems, this paper proposes a new algorithm which is the neural network controller. The new algorithm uses the neural network instead of activation function to control object at the output node. Therefore, control object is composed of neural network controller unifying activation function, and it supplies the error back propagation path to calculate the error at the output node. As a result, the input-output pattern problem of the controller which is resigned by the simple structure of neural network is solved, and real-time learning can be possible in general back propagation algorithm. Application of the new algorithm of neural network controller gives excellent performance for initial and tracking response and it shows the robust performance for rapid load change and disturbance. The proposed control algorithm is implemented on a high speed DSP, TMS320C32, for the speed of 3-phase induction motor. Enhanced performance is shown in the test of the speed control.

  • PDF