• Title/Summary/Keyword: rapid loading

Search Result 208, Processing Time 0.025 seconds

Strain Rate Effect on the Compressive and Tensile Strength of Hooked Steel Fiber and Polyamide Fiber Reinforced Cement Composite (변형 속도에 따른 후크형 강섬유 및 폴리아미드섬유보강 시멘트 복합체의 압축 및 인장강도 특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.76-85
    • /
    • 2017
  • In this study, to evaluate the mechanical properties of fiber-reinforced cement composites by strain rate, hydraulic rapid loading test system was developed. And compressive and tensile strength of the hooked steel fiber and polyamide fiber reinforced cement composite were evaluated. As a result, the compressive strength, strain capacity and elastic modulus were increased with increasing strain rate. The effect of compressive strength by type and volume fraction of fibers was not significant. The dynamic increase factor(DIF) of the compressive strength was higher than that of the CEB-FIP model code 2010 and showed a trend similar to that of ACI-349. The tensile strength and strain capacity were increased with increasing strain rate. The hooked steel fibers were drawn from the matrix. The tensile strength and strain capacity of hooked steel fiber reinforced cement composites were increased as the strain rate increased. The tensile strength and deformation capacity of the fiber reinforced cement composites were increased. And, hooked steel fibers were drawn from the matrix. On the other hand, because the bonding properties of polyamide fiber and matrix is large, polyamide fiber was cut-off with out pullout from matrix. The strain rate effect on the tensile properties of polyamide fiber reinforced cement composites was found to be strongly affected by the tensile strength of the fibers.

Slope Stability Analysis of New Gabion Wall System with Vegetation Base Materials for Stream Bank Stability and Rehabilitation (계안 복원을 위한 식생기반재 돌망태 옹벽의 계안 안정효과 분석)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.130-137
    • /
    • 2012
  • This study has conducted to develop new gabion wall systems with vegetation base materials for stream bank stability and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Normally gabion wall systems resist the lateral earth pressures or stream power by their own weight. Therefore, fill material must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones are basically specified, and about 50-mm rubbles are also used. Test application of new gabion wall system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the analysis of hydraulic stability of new gabion wall system, gabion wall system has highest threshold shear stress when the gabion wall covered by vegetation. New gabion wall system is highly resistant to sliding and overturning because safety coefficients exceed 1.5. As a result of term of slope stability analysis of new gabion wall system by Bishop and Fellenius methods, stability of stream bank was highly increased after the construction of gabion wall. Therefore, new gabion wall system is effective to stabilize unstable stream bank.

Pseudo-Static Behaviors of U-shaped PSC Girder with Wide Flanges (확폭플랜지를 갖는 U형 프리스트레스 거더의 유사정적거동)

  • Rhee, In-Kyu;Lee, Joo-Beom;Kim, Lee-Hyeon;Park, Joo-Nam;Kwak, Jong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.993-999
    • /
    • 2008
  • A girder height limitation is the critical parameter for rapid construction of bridge deck and construction space limitation especially in urban area such as high population area and high density habitats. A standard post-tensioned I-shaped concrete girder usually demands relatively higher girder height in order to retain sufficient moment arm between compression force and tensile force. To elaborate this issue, a small U-shaped section with wide flanges can be used as a possible replacement of I-shaped standard girder. This prestressed concrete box girder allows more flexible girder height adjustment rather than standard I-shaped post-tensioned girder plus additional torsion resistance benefits of closed section. A 30m-long, 1.7m-high and 3.63m-wide actual small prestressed concrete box girder is designed and a laboratory test for its static behaviors by applying 6,200kN amount of load in the form of 4-point bending test was performed. The load-deflection curve and crack patterns at different loading stage are recorded. In addition, to extracting the dynamic characteristics such as natural frequency and damping ratio of this girder, several excitation tests with artificial mechanical exciter with un-symmetric mass are carried out using operational frequency sweep-up. Nonlinear finite element analysis of this 4 point bending test under monotonic static load is investigated and discussed with aids of concrete damaged plasticity formulation using ABAQUS program.

  • PDF

Variations in Temperature and Relative Humidity of Rough Rice in the Polypropylene Bulk Bag during Waiting Time for Drying (벌크 백 수확 벼의 건조대기 시간 중 온.습도 변화양상 구명)

  • Lee, Choon-Ki;Yun, Jong-Tag;Song, Jin;Jeong, Eung-Gi;Lee, Yu-Young;Kim, Wook-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.339-349
    • /
    • 2010
  • The uses of the polypropylene bulk bags having the loading capacities more than 500 kg are increasing in Korea recently as a storage container for rough rice. This study was performed to obtain the basic information on the changes of temperature and relative humidity in the bulk-bag-stored high moisture rough rice during waiting for drying. At the moisture content more than 22% on wet weight basis of paddy, the bulk-bag inside temperature rose up to more than $40^{\circ}C$ and then slid down during storage. For example, in case of Hwaseongbyeo, 26.5% moisture content of rough rice (MCRR) harvested at 46 days after heading (DAH) showed $54.5^{\circ}C$ of peak temperature at 66.8 hours after bulk-bag loading, 22.5% MCRR harvested at 52 DAH exhibited $42.0^{\circ}C$ at 81.1 hours, and 19.7% MCRR harvested at 55 DAH displayed $38.9^{\circ}C$ at 119.0 hours. There were a good linear relationship between peak temperatures of bulk-bag inside and moisture contents of paddy ($r^2$=0.89 in 2005, and 0.87 in 2006), while the slope and intercept of the linear regression equation was affected by the environmental conditions such as ambient temperatures and microbial flora. The peak temperatures increased with the rate of about $2.74-3.33^{\circ}C$ per every 1% increase of moisture content at higher moisture contents of paddy than 19%. The relative humidity varied depending on bulk-bag inside temperature and rough rice moisture content, and showed the range of 94.2% to 99.9% in the central point of the bulk-bag. The results suggested that a rapid drying treatment as soon as possible was needed to produce a good quality of rice when the paddy of high moisture more than 22% on wet basis was harvested in a bulk-bag especially at high ambient temperature.

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

A Feasibility Study of the K-LandBridge through a Linear Programming Model of Minimum Transport Costs (최소운송비용의 선형계획모형을 통한 K-LandBridge의 타당성 연구)

  • Koh, Yong Ki;Seo, Su Wan;Na, Jung Ho
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.95-108
    • /
    • 2016
  • China has recently advocated a national strategy called "One Belt One Road" and transferred to execution to refine it into detailed action plans and has continued to fix the complement. However, the Korean Peninsula, including the North Korea remains could not be included at all in the Chinese development policy and framework in terms of the International Logistics. Currently it is raised between Korea-China rail ferry system again and that is when we need to make effective policy development on international multimodal transport system in Northeast Asia. This paper introduces the K-LB (Korea LandBridge) as its execution plan and conducted a feasibility study on this. K-LB consists of a Korea-Russian train ferry system based in Pohang Yeongil New Port(light-wing) and a Korea-China train ferry system based in Saemangeum New Port(left-wing). These two wings are linked to the existing rail system in Korea. This study is convinced that the K-LB is an effective international logistics system in the current terms and conditions and also demonstrated that it is feasible to introduce th K-LB on the peninsula. More strictly speaking, through a linear programming under objective function that minimize the transport cost quantified prior to demonstrate the feasibility, the available ranges and conditions for the transportation costs that are ensured the effectiveness of the K-LB are presented as results. According to the results, if the transport cost of K-LB is cheaper about 34.5% than that of sea transport such as container transport, the object goods may be transported by K-LB on this route. It means that the K-LB system has a competitive advantage due to more rapid customs clearance as well as omitted loading and unloading procedures over container transportation system. It also noted that the threshold level may not be large. Therefore, K-LB has competitive enough to prove its introduction in the Northeast Asian logistics system.

Development of High Intensity Focused Ultrasound (HIFU) Mediated AuNP-liposomal Nanomedicine and Evaluation with PET Imaging

  • Ji Yoon Kim;Un Chul Shin;Ji Yong Park;Ran Ji Yoo;Soeku Bae;Tae Hyeon Choi;Kyuwan Kim;Young Chan Ann;Jin Sil Kim;Yu Jin Shin;Hokyu Lee;Yong Jin Lee;Kyo Chul Lee;Suhng Wook Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Liposomes as drug delivery system have proved useful carrier for various disease, including cancer. In addition, perfluorocarbon cored microbubbles are utilized in conjunction with high-intensity focused-ultrasound (HIFU) to enable simultaneous diagnosis and treatment. However, microbubbles generally exhibit lower drug loading efficiency, so the need for the development of a novel liposome-based drug delivery material that can efficiently load and deliver drugs to targeted areas via HIFU. This study aims to develop a liposome-based drug delivery material by introducing a substance that can burst liposomes using ultrasound energy and confirm the ability to target tumors using PET imaging. Liposomes (Lipo-DOX, Lipo-DOX-Au, Lipo-DOX-Au-RGD) were synthesized with gold nanoparticles using an avidin-biotin bond, and doxorubicin was mounted inside by pH gradient method. The size distribution was measured by DLS, and encapsulation efficiency of doxorubicin was analyzed by UV-vis spectrometer. The target specificity and cytotoxicity of liposomes were assessed in vitro by glioblastoma U87mg cells to HIFU treatment and analyzed using CCK-8 assay, and fluorescence microscopy at 6-hour intervals for up to 24 hours. For the in vivo study, U87mg model mouse were injected intravenously with 1.48 MBq of 64Cu-labeled Lipo-DOX-Au and Lipo-DOX-Au-RGD, and PET images were taken at 0, 2, 4, 8, and 24 hours. As a result, the size of liposomes was 108.3 ± 5.0 nm at Lipo-DOX-Au and 94.1 ± 12.2 nm at Lipo-DOX-Au-RGD, and it was observed that doxorubicin was mounted inside the liposome up to 52%. After 6 hours of HIFU treatment, the viability of U87mg cells treated with Lipo-DOX-Au decreased by around 20% compared to Lipo-DOX, and Lipo-DOX-Au-RGD had a higher uptake rate than Lipo-DOX. In vivo study using PET images, it was confirmed that 64Cu-Lipo-DOX-Au-RGD was taken up into the tumor immediately after injection and maintained for up to 4 hours. In this study, drugs released from liposomes-gold nanoparticles via ultrasound and RGD targeting were confirmed by non-invasive imaging. In cell-level experiments, HIFU treatment of gold nanoparticle-coupled liposomes significantly decreased tumor survival, while RGD-liposomes exhibited high tumor targeting and rapid release in vivo imaging. It is expected that the combination of these models with ultrasound is served as an effective drug delivery material with therapeutic outcomes.

Facile [11C]PIB Synthesis Using an On-cartridge Methylation and Purification Showed Higher Specific Activity than Conventional Method Using Loop and High Performance Liquid Chromatography Purification (Loop와 HPLC Purification 방법보다 더 높은 비방사능을 보여주는 카트리지 Methylation과 Purification을 이용한 손쉬운 [ 11C]PIB 합성)

  • Lee, Yong-Seok;Cho, Yong-Hyun;Lee, Hong-Jae;Lee, Yun-Sang;Jeong, Jae Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • $[^{11}C]PIB$ synthesis has been performed by a loop-methylation and HPLC purification in our lab. However, this method is time-consuming and requires complicated systems. Thus, we developed an on-cartridge method which simplified the synthetic procedure and reduced time greatly by removing HPLC purification step. We compared 6 different cartridges and evaluated the $[^{11}C]PIB$ production yields and specific activities. $[^{11}C]MeOTf$ was synthesized by using TRACERlab FXC Pro and was transferred into the cartridge by blowing with helium gas for 3 min. To remove byproducts and impurities, cartridges were washed out by 20 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ solution (pH 5.1) and 10 mL of distilled water. And then, $[^{11}C]PIB$ was eluted by 5 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ into the collecting vial containing 10 mL saline. Among the 6 cartridges, only tC18 environmental cartridge could remove impurities and byproducts from $[^{11}C]PIB$ completely and showed higher specific activity than traditional HPLC purification method. This method took only 8 ~ 9 min from methylation to formulation. For the tC18 environmental cartridge and conventional HPLC loop methods, the radiochemical yields were $12.3{\pm}2.2%$ and $13.9{\pm}4.4%$, respectively, and the molar activities were $420.6{\pm}20.4GBq/{\mu}mol$ (n=3) and $78.7{\pm}39.7GBq/{\mu}mol$ (n=41), respectively. We successfully developed a facile on-cartridge methylation method for $[^{11}C]PIB$ synthesis which enabled the procedure more simple and rapid, and showed higher molar radio-activity than HPLC purification method.