• Title/Summary/Keyword: rapid cooling

Search Result 413, Processing Time 0.024 seconds

Temperature-dependent Diffusion Coefficient of Chloride Ion in UAE Concrete (UAE 콘크리트에 대한 염화물 확산의 온도의존성)

  • Ji-Won Hwang;Seung-Jun Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.48-54
    • /
    • 2024
  • NPP (Nuclear power plant) structures have been constructed near to the sea shore line for cooling water and exposed to steel corrosion due to chloride attack. Regarding NPP structures built in the UAE, chloride transport may be more rapid than those in the other regions since the temperature near to the coast is high. In this study, concrete samples with 5,000psi (35MPa) design strength grade were manufactured with the materials and mix proportions, which were the same as used in the UAE NPP structures, then chloride diffusion coefficients were evaluated considering temperature and curing age. The compressive strength and the diffusion coefficient were evaluated and analyzed for the samples with 28 and 91 curing days. In addition, chloride diffusion tests for 91-day-cured condition were carried out in the range of 20℃ to 50℃. The activation energy was obtained through converting the temperature slope to a logarithmic function and it was compared with the previous studies. The proposed activation energy can be useful for a reasonable durability design by using actual temperature-dependent chloride diffusion coefficient.

Evaluation of cryoablation using a prototype cryoablation needle in swine liver

  • Hyunjoon Son;Jonghyun Lee;Sung Yong Han;Tae In Kim;Dong Uk Kim;Daejin Kim;Gun-Ho Kim
    • Clinical Endoscopy
    • /
    • v.57 no.5
    • /
    • pp.675-682
    • /
    • 2024
  • Background/Aims: Pancreatic cancer poses significant challenges due to its tendency for late-stage diagnosis and high mortality rates. Cryoablation, a technique used to treat various types of cancer, has shown potential in enhancing the prognosis of pancreatic cancer when combined with other therapies. However, its implementation is often limited by the need for lengthy procedures and specialized equipment. This study aims to develop a cryoablation needle optimized for endoscopic ultrasonography to simplify its application in treating pancreatic cancer. Methods: The study involved conducting cryoablation experiments on swine liver tissue. It utilized cryo-needles to evaluate the extent of cell death across various temperatures and durations of cryoablation. Results: The cryoablation system, which employed liquid carbon dioxide, achieved rapid cooling, reaching temperatures below -60 ℃ within 30 seconds and maintained the cryoablation process for 200 seconds. These conditions resulted in necrosis of the liver tissue. Notable cellular changes were observed up to 15 mm away from the cryoablation needle. Conclusions: This experimental study successfully demonstrated the efficacy of using a cryo-needle for cryoablation in swine liver tissue. Further trials involving pancreatic tissue are expected to verify its effectiveness, underscoring the importance of continued research to establish its role as a complementary therapy in pancreatic cancer treatment.

Petrological Study on the Spherulitic Rhyolite in the Jangsan Area, Busan (부산 장산 지역의 구과상(球課狀) 유문암에 대한 암석학적 연구)

  • Park, Sumi;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-233
    • /
    • 2013
  • Spherulitic rhyolite occur as part of ring dyke which showing a vertical flowage of $60^{\circ}{\sim}90^{\circ}$, of the Jangsan cauldron was studied. The spherulites range in diameter from a few millimeters to 2.8 centimeters or more, and average 5~10 millimeters. It belongs to radiated simple spherulite type. They consist of a core of moderate brown dense material encased by a thin crust, a few millimeters thick at most of white grey material. The spherulites frequently have a radiating fibrous structure, which are thought to have formed as a consequence of rapid mineral growth caused by very fast cooling of the dykes in shallow depth near the surface. EPMA examination of the concentric-zoned core of spherulites show that they are mainly composed of cryptocrystalline-fibrous intergrowth of silica minerals and alkali feldspars which have $SiO_2$ 82% or more, $Al_2O_3$ 7~10%, $Na_2O+K_2O$ less than 8%. The feldspar compositions of the spherulites lie essentially within the sanidine field. XRD examination show that spherulites are mainly composed of quartz, sanidine, albite with minor mica, kaolinite and chlorite. According to X-ray mapping, the spherulites are enriched in $SiO_2$ in the core and partly enriched $Na_2O$ or $K_2O$, $Al_2O_3$ in the shell that reflect in compositional zoning with increasing spherulitic devitrification. The feathery and non-equant crystal shapes of spherulites from rhyolite dyke of Jangsan cauldron suggest that they may have formed during the rapid cooling of dyke under the static state, or faster velocity of devitrification from glassy materials than movement velocity of the magma intrusion. The spherulitic rhyolite originated from high-silica(75.4~75.7 wt.%) rhyolite magma.

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • O, Se-Gyu;Gang, Mun-Ho;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45$^{\circ}$r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45$^{\circ}$r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

  • PDF

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • Sae Kyoo Oh;Moon Ho Kang;Sang Deok Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.15-15
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45°r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45°r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

Strength Properties of High-Strength Concrete Exposed at High Temperature (고온을 받은 고강도 콘크리트의 강도특성)

  • 윤현도;김규용;한병찬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.698-707
    • /
    • 2002
  • A review is presented of experimental studies on the strength performance of concrete exposed at short-term and rapid heating as in a fire and after cooling. Emphasis is placed on concretes with high original compressive strengths, that is, high-strength concrete(HSC). The compressive strength-temperature relationships from the reviewed test programs are distinguished by the test methods used in obtaining the data(unstressed, unstressed residual strength, and stressed tests) and by the aggregate types(normal or lightweight), The compressive strength properties of HSC vary differently with temperature than those of NSC. HSC have higher rates of strength loss than lower strength concrete in the temperature range of between 20$^{\circ}C$ to about 400$^{\circ}C$. These difference become less significant at temperatures above 400$^{\circ}C$ compressive strengths of HSC at 800$^{\circ}C$ decrease to about 30 % of the original room temperature strength. A comparison of lest results with current code provisions on the effects of elevated temperatures on concrete compressive strength and elastic modulus shows that the CEN Eurocodes and the CEB provisions are unconservative.

A Study on the Characteristics of the Residual Stress Distribution of Steel Structural Members (용접(鎔接) 강구조(鋼構造) 부재(部材)의 잔류응력(殘留應力) 특성(特性)에 관한 연구(研究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1987
  • Residual stresses have remained around welding areas of a steel structure member after welding operation. The major causes to occur these residual stresses are the local heat due to a welding, the heat stresses due to a irregular and rapid cooling condition, the material and rigidity of a steel structure. Ultimatly, these residual stresses have been known to decrease a brittle fracture strength, a fatigue strength, a buckling strength, dynamic properties, and the corrosion resistance of the material. This paper deals with the residual stresses on a steel structure member through experimental studies. SWS 58 plates were welded by the method of X-groove type. These plates were layed on the heat treatment at four different temperatures; $350^{\circ}C$, $500^{\circ}C$, $650^{\circ}C$ and $800^{\circ}C$. The resulting residual Stresses were measured by hole drilling method, and the followings were obtained. The residual stresses on the vicinity of a welding point were relieved most effectively at the temperature of $650^{\circ}C$, and these stresses relieved completly when the ratio of a hole diamerter to a hole depth became unity. Hardness test shows that the higher value of hardness at the heat affected zone dropped to belower as the temperature went up from $350^{\circ}C$ to $800^{\circ}C$. The Welding input heats have not influenced the magnitude of residual stresses at the input heat range between above and below one forth than standard.

  • PDF

Comparison of Different Thawing Methods on Cryopreserved Aorta (냉동 보존된 대동맥의 해동방법)

  • 오영민;심성보;사영조;박재길;곽문섭;이선희
    • Journal of Chest Surgery
    • /
    • v.37 no.2
    • /
    • pp.113-118
    • /
    • 2004
  • The studies on cryopreserved arterial allograft have been focused on cooling methods, pre-treatment, cryoprotectant agents, and preservation temperature. But recently, several studies have reported that thawing methods also play an important role in the occurrence of macroscopic and microscopic cracks. This study was designed to investigate the cell injury after thawing, using a rabbit model to clarify the effect of thawing methods on cryopreserved arteries. Material and Method: Segments of the rabbit aorta were obtained and divided into 3 groups (n=60) according to whether the specimens were fresh (control, n=20), cryopreserved and rapidly thawed (RT) at 37$^{\circ}C$ (n=20), or cryopreserved and subjected to controlled, automated slow thawing (ST)(n=20). Cell damage was established using the TUNEL method and the morphological changes were also evaluated. Result: In the group that was rapidly thawed, the expression of TUNEL (+) cells increased significantly more than in the slowly thawed group. In addition, the endothelial denudation, microvesicles and edema were significant in the rapidly thawed group compared with those changes in the slowly thawed group. Conclusion: Our study suggests that the rapid thawing method may be one of the major causes of cellular damage and delayed rupture in cryopresewed arterial allografts. The expression of TUNEL (+) cells and structural changes were significantly low in the slowly thawed group, which might have contributed to the improvement of graft failure after transplantation.

Effect of Cooking Time and Storage Temperature on the Quality of Home-Made Retort Pouch Packed Chuncheon Dakgalbi

  • Muhlisin, Muhlisin;Kim, Dong Soo;Song, Yeong Rae;Cho, Young Jae;Kim, Cheon-Jei;An, Byoung-Ki;Kang, Chang-Won;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.737-743
    • /
    • 2013
  • The aim of this research is to evaluate the effects of cooking time and storage temperature on the quality of home-made retort pouch packed Chuncheon Dakgalbi. The leg meat of broiler is being cut into cubes and is mixed with the Dakgalbi sauce and vegetables. Around 200 g of Chuncheon Dakgalbi is being stuffed into a retort pouch and then vacuumed. The retort pouch packed Chuncheon Dakgalbi is subjected to cooking (autoclaving) at $110^{\circ}C$ and 0.75 Kgf for 10, 20 or 30 min and then transferred to the chilling room at $2^{\circ}C$ for rapid cooling procedures. Subsequently, the samples are stored at $4^{\circ}C$ or $25^{\circ}C$ for 4 wk. According to results of sensory evaluation, the highest sensory scores were found in Chuncheon Dakgalbi which was cooked for 30 min (p<0.05). Prolonged cooking time tends to decrease the pH, CIE $L^*$ and CIE $a^*$ levels, and slightly promote the lipid oxidation and protein deterioration. The Chuncheon Dakgalbi being cooked for 10 min promoted the lipid oxidation and protein deterioration during storage at $25^{\circ}C$. Moreover, the total aerobic and anaerobic bacteria in Chuncheon Dakgalbi being cooked for 10 min started to grow after 3 wk of storage at $25^{\circ}C$. Cooking (autoclaving) at $110^{\circ}C$ for 30 min is able to maintain the quality and shelf-life of retort pouch packed Chuncheon Dakgalbion the market.