• Title/Summary/Keyword: rapid chloride permeability

Search Result 46, Processing Time 0.023 seconds

Automatic categorization of chloride migration into concrete modified with CFBC ash

  • Marks, Maria;Jozwiak-Niedzwiedzka, Daria;Glinicki, Michal A.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this investigation was to develop rules for automatic categorization of concrete quality using selected artificial intelligence methods based on machine learning. The range of tested materials included concrete containing a new waste material - solid residue from coal combustion in fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed experimental tests on obtained chloride migration provided data for learning and testing of rules discovered by machine learning techniques. It has been found that machine learning is a tool which can be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified with CFBC fly ash as materials of good and acceptable resistance to chloride penetration.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

Evaluation on the Properties of Modified-sulfur Concrete as a Basic Study for Development of Anti-corrosive Concrete (내부식성 콘크리트 개발을 위한 기초연구로서 개질유황 혼합 콘크리트의 물성 평가)

  • Park, Sang-Soon;Na, Ok-Jung
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Due to the increased construction of offshore concrete structures and the use of de-icing salts for the purpose of snow removal, the needs for the development of anti-corrosive concrete are increasing. To solve these problems, an evaluation of the mechanical and durability properties for concrete were conducted by mixing modified-sulfur as 0 %, 5 %, 10 %, 15 % cement weight ratio. Both strengths and the properties affecting durability such as water absorption coefficient, chloride ion permeability, accelerated carbonation resistance, rapid freezing and thawing, and chemical resistance were evaluated. All evaluations performed were according to the test specifications associated KS. The results indicate that mixing of modified-sulfur lowed chloride ion permeability and improved chemical resistance.

Development of Strength and Durability Properties of Latex-Modified Concrete with Rapid-Setting Cement (초속경 시멘트를 사용한 라텍스 개질 콘크리트의 강도발현 및 내구특성)

  • 최성욱;홍창우;김동호;최상릉;장홍균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1029-1034
    • /
    • 2001
  • The purpose of this research is to develop rapid setting cement latex modified concrete (RSLMC) which will be used to overlay bridge deck for maintaining and repairing. The main experimental variables were the types of rapid setting cement and variation of latex and antifoam agent contents were selected as admixture factor, then the properties of workability and strength development and durability properties were investigated. The results of this study show that latex content give increment of a slump due to surface tension in polymer particles and reduce unit weight of water for preservation of workability. In addition, When no and 1.6~3.2% antifoam agent were mixed, 8%, 2.0~3.8% were respectively obtained. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. Rapid chloride permeability and freezing-thawing test carried out. As a results, according to increment of containing ratio antifoamer, strength of RSLMC increase, permeability showed lower value than ignorable 100 coulombs. Also, in the case of more than antifoamer 1.6%, the relativity dynamic modulus is mantained more than 90%, but in case of 0, 5%, it decrease. In consequence, with the view of strength and workability of RSLMC, it is considered that appropriate content ratio of antifoam agent and latex solid are respectively 1.6% by latex weight, 15% by cement weight.

  • PDF

Compressibility Characteristics of the Lime Treated Clay (생석회 혼합토의 압축특성에 관한 연구)

  • 민덕기;황광모;오미희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.23-29
    • /
    • 2003
  • In this paper, effects of the acidification of ground and the chemical additive materials-ferric oxide, calcium chloride and calcium sulphate on the compressibility characteristics of the marine clay treated with quick lime were investigated. The rapid inflection point method was carried out. Results showed that the compression index of the untreated marine clay increased as the pH of pore water decreased. Also, the preconsolidation pressure, the coefficient of consolidation and the coefficient of permeability of the untreated marine clay decreased with pH of pore water. In the case of the marine clay treated with the quick lime-calcium chloride, the compression index decreased and the coefficient of consolidation and the coefficient of permeability increased. Specially, the preconsolidation pressure of sample treated with the quick lime-ferric oxide was higher than that of another samples.

Permeability and mechanical properties of binary and ternary cementitious mixtures

  • Sadrmomtazi, Ali;Tahmouresi, Behzad;Amooie, Morteza
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.423-436
    • /
    • 2017
  • Today, pozzolans are widely used in construction for various reasons such as technical and economic efficiency. In this research, in order to evaluate some of important properties of concrete, silica fume and fly ash have been used as a replacement for cement in different mass percentages. Concrete mixtures were made from a water-cement ratio of (0.45) and cured under similar conditions. The main focus of this study was to evaluate the permeability and mechanical properties of concrete made from binary and ternary cementitious mixtures of fly ash and silica fume. In this study permeability of concrete was studied by evaluating the sorptivity, water absorption, water penetration depth, electrical resistivity and rapid chloride permeability (RCP) tests. Mechanical properties of concrete were evaluated with compressive strength, splitting tensile strength and modulus of elasticity. Scanning electronic microscopy (SEM) was used to characterize the effects of silica fume and fly ash on the pore structure and morphology of concrete with cement based matrix. The results indicated that the incorporation of silica fume and fly ash increased the mechanical strength and improved the permeability of concrete.

Modified electrical conductivity test method for evaluation concrete permeability

  • Pilvar, Amirreza;Ramezanianpour, Ali Akbar;Rajaie, Hosein
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.865-880
    • /
    • 2015
  • Standard test method for bulk electrical conductivity (ASTM C1760) provides a rapid indication of the concrete's resistance to the penetration of chloride ions by diffusion. In this paper a new approach for assessing the bulk electrical conductivity of saturated specimens of hardened concrete is presented. The test involves saturating concrete specimens with a 5 M NaCl solution before measuring the conductivity of the samples. By saturating specimens with a highly conductive solution, they showed virtually the same pore solution conductivity. Different concrete samples yield different conductivity primarily due to differences in their pore structure. The feasibility of the method has been demonstrated by testing different concrete mixtures consisting ordinary and blended cement of silica fume (SF) and calcined perlite powder (CPP). Two standard test methods of RCPT (ASTM C1202) and Bulk Conductivity (ASTM C1760) were also applied to all of the samples. The results show that for concretes containing SF and CPP, the proposed method is less sensitive towards the variations in the pore solution conductivity in comparison with RCPT and Bulk Conductivity tests. It seems that this method is suitable for the assessment of the performance and durability of different concretes containing supplementary cementitious materials.

Basic Properties of Latex-Modified Concrete Using Fly-ash (플라이애쉬를 이용한 라텍스개질 콘크리즈의 기초물성 연구)

  • Hong, Chang-Woo;Jeong, won-Kyong;Kim, Kyong-jin;Yun, Kyong-ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.205-211
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of fly-ash on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete (OPC). Main experimental variables were latex contents (0%, 10%, 15%) and fly-ash content (0, 10%, 20%, 30%). Air content and slump tests were performed to check the basic properties of fresh concretes, and compressive strength, flexural strength, rapid chloride ion permeability and chemical resistance were measured to analyze the basic properties of hardened concretes. The test results showed that air contents of LMC with fly ash decreased as fly-ash contents increased from 0% to 30%. Compressive and flexural strength developments of LMC with fly ash were quite similar to those of LMC without fly ash. However, the long-term flexural strength development of LMC with fly ash after 90 days were bigger than that of LMC without fly ash. Chloride ion permeability and chemical resistance decreased rapidly as the content of fly ash increased. Thus, fly ash could be used at LMC in order to reduce water permeability.

An Experimental Study on the Enhanced Performance of Regulated Set Cement Using Mineral Admixtures (광물질 혼화재를 혼합한 초속경시멘트의 성능개선에 관한 실험적 연구)

  • Won Jong-Pil;Kong Tae-Woong;Park Chan-Gi;Seo Jung-Min;Cho Yong-Jin;Sung Sang-Kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.325-328
    • /
    • 2004
  • According to demand the increase of the rate of strength development for rapid constructions and repairs, many efforts have progressed to improve on performance of concrete. The use of regulated set cement helps make it possible to increase the rate of strength development. However it has some problems as like increasing its permeability and accelerate its long-term deterioration caused by internal and external factors. The purpose of this study is to improve the performance of regulated set cement, which mixed with the mineral admixtures. In this paper, setting time, compressive/flexural strength and chloride permeability of mortar according to the substitute ratio of SF, FA and BS in the range of $5\~20\%$ were conducted. Based on the test results, 5% substitute of silica fume for binder was showed good performance.

  • PDF

Strength and Durability Properties of Concretes Using Ground Granulated Blast-Furnace Slag According to Steam Curing Types (고로(高爐)슬래그 미분말(微分末)을 사용한 콘크리트의 증기양생(蒸氣養生)에 따른 강도(强度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jang, Ho-Sung;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.52-59
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of ground granulated blast-furnace slag on strength development and durability of ordinary portland cement concrete (OPC) with steam curing types. Main experimental variables were slag contents(0%, 10%, 30%, 50%, 70%) and curing types (standard, accelerated curing). It were performed to check the basic properties of concretes that compressive strength, rapid chloride ion permeability and chemical resistance. From the result, we have found that increasing the amount of blast-furnace slag produced concrete with increased compressive strength and permeability resistance. Rapid freezing-thawing test showed that they were good enough to protect the concrete structures and to carry out cyclic freezing and thawing. The freeze-thaw resistance of blast-furnace slag produced concretes maintained above 90% of relative dynamic modulus after 300 freezing-thawing cycles. Increasing the amount of blast-furnace slag produced concretes with increased chemical resistance.