• Title/Summary/Keyword: ranking-based search

Search Result 110, Processing Time 0.021 seconds

Design and Implementation of Meta Search using Relevance Distribution Information (관련성 분포정보를 이용한 통합 검색 시스템의 설계 및 구현)

  • 김현주
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.11
    • /
    • pp.1427-1438
    • /
    • 2001
  • We design the evaluation factors to represent the relevance distribution information between a query and sources and proposes the scheme to get relevance distribution information based on evaluation factors. Then it is developed that the organization is able to classify the best source toward query, and shown the algorithms that is able to select the best source toward users query, it is developed algorithms that is decided ranking and mering these, after choose the best source to evaluate a query, Finally, it merges the result from the source, and present them to the user to the issued query. This paper also develops the scheme to classify the best sources for query and presents the selection algorithm of the best information sources. Finally the ranking and merging Federated Retrieval System is presented.

  • PDF

Security Constrained Optimal Power Flow by Hybrid Algorithms (하이브리드 알고리즘을 응용하여 안전도제약을 만족시키는 최적전력조류)

  • Kim, Gyu-Ho;Lee, Sang-Bong;Lee, Jae-Gyu;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.305-311
    • /
    • 2000
  • This paper presents a hybrid algorithm for solving optimal power flow(OPF) in order to enhance a systems capability to cope with outages, which is based on combined application of evolutionary computation and local search method. The efficient algorithm combining main advantages of two methods is as follows : Firstly, evolutionary computation is used to perform global exploitation among a population. This gives a good initial point of conventional method. Then, local methods are used to perform local exploitation. The hybrid approach often outperforms either method operating alone and reduces the total computation time. The objective function of the security constrained OPF is the minimization of generation fuel costs and real power losses. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). In OPF considering security, the outages are selected by contingency ranking method(contingency screening model). The OPF considering security, the outages are selected by contingency ranking method(contingency screening model). The method proposed is applied to IEEE 30 buses system to show its effectiveness.

  • PDF

Implementation Techniques to Apply the PageRank Algorithm (페이지랭크 알고리즘 적용을 위한 구현 기술)

  • Kim, Sung-Jin;Lee, Sang-Ho;Bang, Ji-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.745-754
    • /
    • 2002
  • The Google search site (http://www.google.com), which was introduced in 1998, implemented the PageRank algorithm for the first time. PageRank is a ranking method based on the link structure of the Web pages. Even though PageRank has been implemented and being used in various commercial search engines, implementation details did not get documented well, primarily due to business reasons. Implementation techniques introduced in [4,8] are not sufficient to produce PageRank values of Web pages. This paper explains the techniques[4,8], and suggests major data structure and four implementation techniques in order to apply the PageRank algorithm. The paper helps understand the methods of applying PageRank algorithm by means of showing a real system that produces PageRank values of Web pages.

A Document Summary System based on Personalized Web Search Systems (개인화 웹 검색 시스템 기반의 문서 요약 시스템)

  • Kim, Dong-Wook;Kang, Soo-Yong;Kim, Han-Joon;Lee, Byung-Jeong;Chang, Jae-Young
    • Journal of Digital Contents Society
    • /
    • v.11 no.3
    • /
    • pp.357-365
    • /
    • 2010
  • Personalized web search engine provides personalized results to users by query expansion, re-ranking or other methods representing user's intention. The personalized result page includes URL, page title and small text fragment of each web document. which is known as snippet. The snippet is the summary of the document which includes the keywords issued by either user or search engine itself. Users can verify the relevancy of the whole document using only the snippet, easily. The document summary (snippet) is an important information which makes users determine whether or not to click the link to the whole document. Hence, if a search engine generates personalized document summaries, it can provide a more satisfactory search results to users. In this paper, we propose a personalized document summary system for personalized web search engines. The proposed system provides increased degree of satisfaction to users with marginal overhead.

Semantic Search : A Survey (시맨틱 검색 : 서베이)

  • Park, Jin-Soo;Kim, Nam-Won;Choi, Min-Jung;Jin, Zhe;Choi, Young-Seok
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.19-36
    • /
    • 2011
  • Since the ambitious declaration of the vision of the Semantic Web, a growing number of studies on semantic search have recently been made. However, we recognize that our community has not so much accomplished despite those efforts. We analyze two underlying problems : a lack of a shared notion of semantic search that guides current research, and a lack of a comprehensive view that envisions future work. Based on this diagnosis, we start by defining semantic search as the process of retrieving desired information in response to user's input using semantic technologies such as ontologies. Then, we propose a classification framework in order for the community to obtain the better understanding of semantic search. The proposed classification framework consists of input processing, target source, search methodology, results ranking, and output data type. Last, we apply our proposed framework to prior studies and suggest future research directions.

Implementation of Content-based Image Retrieval System using Color Spatial and Shape Information (칼라 공간과 형태 정보를 이용한 내용기반 이미지 검색 시스템 구현)

  • Ban, Hong-Oh;Kang, Mun-Ju;Choi, Heyung-Jin
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.681-686
    • /
    • 2003
  • In recent years automatic image indexing and retrieval have been increasingly studied. However, content-based retrieval techniques for general images are still inadequate for many purposes. The novelty and originality of this thesis are the definition and use of a spatial information model as a contribution to the accuracy and efficiency of image search. In addition, the model is applied to represent color and shape image contents as a vector using the method of image features extraction, which was inspired by the previous work on the study of human visual perception. The indexing scheme using the color, shape and spatial model shows the potential of being applied with the well-developed algorithms of features extraction and image search, like ranking operations. To conclude, user can retrieved more similar images with high precision and fast speed using the proposed system.

Comparison and Evaluation of Web-based Image Search Engines (이미지정보 탐색을 위한 웹 검색엔진의 비교 평가)

  • Kim, Hyo-Jung
    • Journal of Information Management
    • /
    • v.31 no.4
    • /
    • pp.50-70
    • /
    • 2000
  • Since the contents of internet resources are beginning to include texts, images and sounds, different Web-based image search engines have been developed accordingly. It is a fact that these diversities of multimedia contents have made search process and retrieval of relevant information very difficult. The purpose of the study is to compare and evaluate its special features and performance of the existing image search engines in order to provide user help to select appropriate search engines. The study selected AV Photo Finder, Lycos MultiMedia, Amazing Picture Machine, Image Surfer, WebSeek, Ditto for comparison and evaluation because of their reputations of popularity among users of image search engines. The methodology of the study was to analyze previous related literature and establish criteria for the evaluation of image search engines. The study investigated characteristics, indexing methods, search capabilities, screen display and user interfaces of different search engines for the purpose of comparison of its performance. Finally, the study measured relative recall and precision ratios to evaluate their electiveness of retrieval under the experimental set up. Results of the comparative analysis in regard to its search performance are as follows. AV Photo Finder marked the highest rank among other image search engines. Ditto and WebSeek also showed comparatively high precision ratio. Lycos MultiMedia and Image Surfer follows after them. Amazing Picture Machine stowed the lowest in ranking.

  • PDF

Associated Keyword Recommendation System for Keyword-based Blog Marketing (키워드 기반 블로그 마케팅을 위한 연관 키워드 추천 시스템)

  • Choi, Sung-Ja;Son, Min-Young;Kim, Young-Hak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.246-251
    • /
    • 2016
  • Recently, the influence of SNS and online media is rapidly growing with a consequent increase in the interest of marketing using these tools. Blog marketing can increase the ripple effect and information delivery in marketing at low cost by prioritizing keyword search results of influential portal sites. However, because of the tough competition to gain top ranking of search results of specific keywords, long-term and proactive efforts are needed. Therefore, we propose a new method that recommends associated keyword groups with the possibility of higher exposure of the blog. The proposed method first collects the documents of blog including search results of target keyword, and extracts and filters keyword with higher association considering the frequency and location information of the word. Next, each associated keyword is compared to target keyword, and then associated keyword group with the possibility of higher exposure is recommended considering the information such as their association, search amount of associated keyword per month, the number of blogs including in search result, and average writhing date of blogs. The experiment result shows that the proposed method recommends keyword group with higher association.

A Heuristic Optimal Path Search Considering Cumulative Transfer Functions (누적환승함수를 고려한 경험적 최적경로탐색 방안)

  • Shin, Seongil;Baek, Nam Cheol;Nam, Doo Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.60-67
    • /
    • 2016
  • In cumulative transfer functions, as number of transfer increase, the impact of individual transfer to transfer cost increase linearly or non linearly. This function can effectively explain various passengers's travel behavior who choose their travel routes in integrated transit line networks including bus and railway modes. Using the function, it is possible to simulate general situations such that even though more travel times are expected, less number of transfer routes are preferred. However, because travel cost with cumulative transfer function is known as non additive cost function types in route search algorithms, finding an optimal route in integrated transit networks is confronted by the insolvable enumeration of all routes in many cases. This research proposes a methodology for finding an optimal path considering cumulative transfer function. For this purpose, the reversal phenomenon of optimal path generated in route search process is explained. Also a heuristic methodology for selecting an optimal route among multiple routes predefined by the K path algorithm. The incoming link based entire path deletion method is adopted for finding K ranking path thanks to the merit of security of route optimality condition. Through case studies the proposed methodology is discussed in terms of the applicability of real situations.

Re-ranking the Results from Two Image Retrieval System in Cooperative Manner (두 영상검색 시스템의 협력적 이용을 통한 재순위화)

  • Hwang, Joong-Won;Kim, Hyunwoo;Kim, Junmo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • Image retrieval has become a huge part of computer vision and data mining. Although commercial image retrieval systems such as Google show great performances, the improvement on the performances are constantly on demand because of the rapid growth of data on web space. To satisfy the demand, many re-ranking methods, which enhance the performances by reordering retrieved results with independent algorithms, has been proposed. Conventional re-ranking algorithms are based on the assumption that visual patterns are not used on initial image retrieval stage. However, image search engines in present have begun to use the visual and the assumption is required to be reconsidered. Also, though it is possible to suspect that integration of multiple retrieval systems can improve the overall performance, the research on the topic has not been done sufficiently. In this paper, we made the condition that other manner than cooperation cannot improve the ranking result. We evaluate the algorithm on toy model and show that propose module can improve the retrieval results.