• Title/Summary/Keyword: rank-based

Search Result 1,184, Processing Time 0.026 seconds

Adaptive Sampling-Based Particle Filtering for Solving the Rank Deficiency Problem of Robot Localization in Corridor Environments (복도 환경에서 로봇 위치추정의 랭크 결핍 문제 해결을 위한 적응적 샘플링 기반 파티클 필터링 기법)

  • Suhyeon Kang;Yujin Kwon;Heoncheol Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.4
    • /
    • pp.175-184
    • /
    • 2024
  • This research addresses the problem of robot localization in corridor environments using LiDAR (Light Detection and Ranging). Due to the rank deficiency problem in scan matching with LiDAR alone, the accuracy of robot localization may degenerate seriously. This paper proposes an adaptive sampling-based particle filtering method using depth sensors to overcome the rank deficiency problem. The increase in the sample size in particle filters can be considered to solve the problem. But, it may cause much computation cost. In the proposed method, the sample size of the particle set in the proposed method is adjusted adaptively to the confidence of depth sensor data. The performance of the proposed method was test by real experiments in various environments. The experimental results showed that the proposed method was capable of reducing the estimation errors and more accurate than the conventional method.

Order-Restricted Inference with Linear Rank Statistics in Microarray Data

  • Kang, Moon-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.137-143
    • /
    • 2011
  • The classification of subjects with unknown distribution in a small sample size often involves order-restricted constraints in multivariate parameter setups. Those problems make the optimality of a conventional likelihood ratio based statistical inferences not feasible. Fortunately, Roy (1953) introduced union-intersection principle(UIP) which provides an alternative avenue. Multivariate linear rank statistics along with that principle, yield a considerably appropriate robust testing procedure. Furthermore, conditionally distribution-free test based upon exact permutation theory is used to generate p-values, even in a small sample. Applications of this method are illustrated in a real microarray data example (Lobenhofer et al., 2002).

Robust Non-negative Matrix Factorization with β-Divergence for Speech Separation

  • Li, Yinan;Zhang, Xiongwei;Sun, Meng
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • This paper addresses the problem of unsupervised speech separation based on robust non-negative matrix factorization (RNMF) with ${\beta}$-divergence, when neither speech nor noise training data is available beforehand. We propose a robust version of non-negative matrix factorization, inspired by the recently developed sparse and low-rank decomposition, in which the data matrix is decomposed into the sum of a low-rank matrix and a sparse matrix. Efficient multiplicative update rules to minimize the ${\beta}$-divergence-based cost function are derived. A convolutional extension of the proposed algorithm is also proposed, which considers the time dependency of the non-negative noise bases. Experimental speech separation results show that the proposed convolutional RNMF successfully separates the repeating time-varying spectral structures from the magnitude spectrum of the mixture, and does so without any prior training.

A Speaker Pruning Method for Real-Time Speaker Identification System

  • Kim, Min-Joung;Suk, Soo-Young;Jeong, Jong-Hyeog
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.65-71
    • /
    • 2015
  • It has been known that GMM (Gaussian Mixture Model) based speaker identification systems using ML (Maximum Likelihood) and WMR (Weighting Model Rank) demonstrate very high performances. However, such systems are not so effective under practical environments, in terms of real time processing, because of their high calculation costs. In this paper, we propose a new speaker-pruning algorithm that effectively reduces the calculation cost. In this algorithm, we select 20% of speaker models having higher likelihood with a part of input speech and apply MWMR (Modified Weighted Model Rank) to these selected speaker models to find out identified speaker. To verify the effectiveness of the proposed algorithm, we performed speaker identification experiments using TIMIT database. The proposed method shows more than 60% improvement of reduced processing time than the conventional GMM based system with no pruning, while maintaining the recognition accuracy.

Nonparametric Estimators of Ratio of Scale Parameters Based on Rank-Like Tests

  • Song, Moon-Sup;Chung, Han-Young
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.2
    • /
    • pp.181-193
    • /
    • 1980
  • A class of nonparametric estimators of the ratio of scale parameters is proposed. The estimators are based on the distribution-free rank-like test suggested by Fligner and Killeen (1976). An explicit form of the estimator is the median of the ratios of absolute deviations from the combined sample median. A small-sample Monte Carlo study shows that the proposed estimator is more efficient than the Bhattacharyya (1977) estimator. The proposed estimator is is reasonably insensitive to small failures in the assumption of equal medians. A modified estimator is also considered when the meidans are unequal.

  • PDF

Block Sparse Low-rank Matrix Decomposition based Visual Defect Inspection of Rail Track Surfaces

  • Zhang, Linna;Chen, Shiming;Cen, Yigang;Cen, Yi;Wang, Hengyou;Zeng, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6043-6062
    • /
    • 2019
  • Low-rank matrix decomposition has shown its capability in many applications such as image in-painting, de-noising, background reconstruction and defect detection etc. In this paper, we consider the texture background of rail track images and the sparse foreground of the defects to construct a low-rank matrix decomposition model with block sparsity for defect inspection of rail tracks, which jointly minimizes the nuclear norm and the 2-1 norm. Similar to ADM, an alternative method is proposed in this study to solve the optimization problem. After image decomposition, the defect areas in the resulting low-rank image will form dark stripes that horizontally cross the entire image, indicating the preciselocations of the defects. Finally, a two-stage defect extraction method is proposed to locate the defect areas. The experimental results of the two datasets show that our algorithm achieved better performance compared with other methods.

Rank Decision on Regional Environment Assessment Indicators Using Triangular Fuzzy Number - Focused on Ecosystem - (삼각퍼지수를 활용한 지역환경 평기지표 순위 결정 - 생태계를 중심으로 -)

  • You, Ju-Han;Jung, Sung-Gwan;Park, Kyung-Hun;Kim, Kyung-Tae
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.395-406
    • /
    • 2006
  • This study was carried out to offer the systematical and scientific method of regional environment conservation by deciding the rank using fuzzy theory, and try to find the methodology to accurately accomplished the regional environment assessment for sound land conservation. The results were as follows. To transform the Likert's scale granted to assessment indicators into the type of triangular fuzzy number (a, b, c), there was conversion to each minimum (a), median (b), and maximum (c) in applying membership function. We used the center of gravity and eigenvalue leading to the rank. In the sequential analysis of rank-based test of assessment indicators by triangular fuzzy number, the result proclaimed that ranking of the indicators was, in the biotic field, in the order of 'dominance', 'sociality', 'coverage' and in the abiotic one, 'soil pH', 'T-N', 'soil property', and in the qualitative one, 'impact rating class', 'hemeroby degree', 'land use pattern', and in the functional one, 'protection of water resource', 'offer of recreation', 'protection of soil erosion'. Therefore, there was a difference between subjective rank from human and the rank from triangular fuzzy number. In other words, the scientific rank decision would be not so much being subjective and biased as dealing with human thoughts mathematically by triangular fuzzy number.

'Hot Search Keyword' Rank-Change Prediction (인기 검색어의 순위 변화 예측)

  • Kim, Dohyeong;Kang, Byeong Ho;Lee, Sungyoung
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.782-790
    • /
    • 2017
  • The service, 'Hot Search Keywords', provides a list of the most hot search terms of different web services such as Naver or Daum. The service, bases the changes in rank of a specific search keyword on changes in its users' interest. This paper introduces a temporal modelling framework for predicting the rank change of hot search keywords using past rank data and machine learning. Past rank data shows that more than 70% of hot search keywords tend to disappear and reappear later. The authors processed missing rank value, using deletion, dummy variables, mean substitution, and expectation maximization. It is however crucial to calculate the optimal window size of the past rank data. We proposed an optimal window size selection approach based on the minimum amount of time a topic within the same or a differing context disappeared. The experiments were conducted with four different machine-learning techniques using the Naver, Daum, and Nate 'Hot Search Keywords' datasets, which were collected for 2 years.

Robust Pupil Detection using Rank Order Filter and Cross-Correlation (Rank Order Filter와 상호상관을 이용한 강인한 눈동자 검출)

  • Jang, Kyung-Shik;Park, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1564-1570
    • /
    • 2013
  • In this paper, we propose a robust pupil detection method using rank order filter and cross-correlation. Potential pupil candidates are detected using rank order filter. Eye region is binarized using variable threshold to find eyebrow, and pupil candidates at the eyebrow are removed. The positions of pupil candidates are corrected, the pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using cross-correlation, we select a pair with the largest similarity measure as a final pupil. The experiments have been performed for 500 images of the BioID face database. The results show that it achieves the high detection rate of 96.8% and improves about 11.6% than existing method.

Brainstorming using TextRank algorithms and Artificial Intelligence (TextRank 알고리즘 및 인공지능을 활용한 브레인스토밍)

  • Sang-Yeong Lee;Chang-Min Yoo;Gi-Beom Hong;Jun-Hyuk Oh;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.509-517
    • /
    • 2023
  • The reactive web service provides a related word recommendation system using the TextRank algorithm and a word-based idea generation service selected by the user. In the related word recommendation system, the method of weighting each word using the TextRank algorithm and the probability output method using SoftMax are discussed. The idea generation service discusses the idea generation method and the artificial intelligence reinforce-learning method using mini-GPT. The reactive web discusses the linkage process between React, Spring Boot, and Flask, and describes the overall operation method. When the user enters the desired topic, it provides the associated word. The user constructs a mind map by selecting a related word or adding a desired word. When a user selects a word to combine from a constructed mind-map, it provides newly generated ideas and related patents. This web service can share generated ideas with other users, and improves artificial intelligence by receiving user feedback as a horoscope.