• Title/Summary/Keyword: rank-based

Search Result 1,184, Processing Time 0.026 seconds

Symbolism of Uniform in the Modern Korea (현대 우리 나라 유니폼에 나타난 상징성)

  • 정현숙;김진구
    • The Research Journal of the Costume Culture
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 1998
  • This study analyzes the symbolism of uniform in modern Korea, based on the symbolic interaction theory. I classify a representative symbol among many symbols in one uniform. I found the sex, age, occupation, situation, religious, group belogning,cleanlines,authority, superiority, and rank symbol in the modern Koran uniform.

  • PDF

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

Comparative Analysis of Multiattribute Decision Aids with Ordinal Preferences on Attribute Weights (속성 가중치에 대한 서수 정보가 주어질 때 다요소 의사결정 방법의 비교분석에 관한 연구)

  • Ahn Byeong Seok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.161-176
    • /
    • 2005
  • In a situation that ordinal preferences on multiattribute weights are captured, we present two solution approaches: an exact approach and an approximate method. The former, an exact solution approach via interaction with a decision-maker, pursues the progressive reduction of a set of non-dominated alternatives by narrowing down the feasible attribute weights region. Subsequent interactive questions and responses, however, sometimes may not guarantee the best alternative or a complete rank order of a set of alternatives that the decision-maker desires to have. Approximate solution approaches, on the other hand, can be divided into three categories including surrogate weights methods, dominance value-based decision rules, and three classical decision rules. Their efficacies are evaluated in terms of choice accuracy via a simulation analysis. The simulation results indicate that a proposed hybrid approach, intended to combine an exact solution approach through interaction and a dominance value-based approach, is recommendable for aiding a decision making in a case that a final choice is seldom made at single step under attribute weights that are imprecisely specified beyond ordinal descriptions.

Other approaches to bivariate ranked set sampling

  • Al-Saleh, Mohammad Fraiwan;Alshboul, Hadeel Mohammad
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.283-296
    • /
    • 2018
  • Ranked set sampling, as introduced by McIntyre (Australian Journal of Agriculture Research, 3, 385-390, 1952), dealt with the estimation of the mean of one population. To deal with two or more variables, different forms of bivariate and multivariate ranked set sampling were suggested. For a technique to be useful, it should be easy to implement in practice. Bivariate ranked set sampling, as introduced by Al-Saleh and Zheng (Australian & New Zealand Journal of Statistics, 44, 221-232, 2002), is not easy to implement in practice, because it requires the judgment ranking of each of the combination of the order statistics of the two characteristics. This paper investigates two modifications that make the method easier to use. The first modification is based on ranking one variable and noting the rank of the other variable for one cycle, and do the reverse for another cycle. The second approach is based on ranking of one variable and giving the second variable the same rank (Concomitant Order Statistic) for one cycle and do the reverse for the other cycle. The two procedures are investigated for an estimation of the means of some well-known distributions. It is show that the suggested approaches can be used in practice and can be more efficient than using SRS. A real data set is used to illustrate the procedure.

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

Practical fatigue/cost assessment of steel overhead sign support structures subjected to wind load

  • van de Lindt, John W.;Ahlborn, Theresa M.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.343-356
    • /
    • 2005
  • Overhead sign support structures number in the tens of thousands throughout the trunk-line roadways in the United States. A recent two-phase study sponsored by the National Cooperative Highway Research Program resulted in the most significant changes to the AASHTO design specifications for sign support structures to date. The driving factor for these substantial changes was fatigue related cracks and some recent failures. This paper presents the method and results of a subsequent study sponsored by the Michigan Department of Transportation (MDOT) to develop a relative performance-based procedure to rank overhead sign support structures around the United States based on a linear combination of their expected fatigue life and an approximate measure of cost. This was accomplished by coupling a random vibrations approach with six degree-of-freedom linear dynamic models for fatigue life estimation. Approximate cost was modeled as the product of the steel weight and a constructability factor. An objective function was developed and used to rank selected steel sign support structures from around the country with the goal of maximizing the objective function. Although a purely relative approach, the ranking procedure was found to be efficient and provided the decision support necessary to MDOT.

Sample size comparison for two independent populations (독립인 두 모집단 설계에서의 표본수 비교)

  • Ko, Hae-Won;Kim, Dong-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1243-1251
    • /
    • 2010
  • For clinical trials, it is common to compare the placebo and new drug. The method of calculating a sample size for two independent populations are the t-test that is used for parametric methods, and the Wilcoxon rank-sum test that is used in the non-parametric methods. In this paper, we propose a method that is using Kim's (1994) statistic power based on the linear placement statistic, which was proposed by Orban and Wolfe (1982). We also compare the sample size for the proposed method with that for using Wang et al. (2003)'s sample size formula which is based on Wilcoxon rank-sum test, and with that of t-test for parametric methods.

Cost-Based Rank Scheduling Algorithm for Multiple Workflow Applications in Cloud Computing (클라우드 컴퓨팅에서 다중 워크플로우 어플리케이션을 위한 비용 기반 랭크 스케줄링 알고리즘)

  • Choe, Gyeong-Geun;Lee, Bong-Hwan
    • The KIPS Transactions:PartA
    • /
    • v.18A no.1
    • /
    • pp.11-18
    • /
    • 2011
  • Cloud computing is a new computing paradigm for sharing resources. Various applications used for cloud services are represented as workflows. These workflow applications must be appropriately allocated to resources or services in cloud. In this paper, a new scheduling algorithm is proposed for multiple workflow applications considering cloud computing environment. The cost-based rank scheduling algorithm considers not only multiple workflow applications, but various QoS metrics for evaluating services. Simulation results show that the proposed algorithm can improve the mean makespan and the availability significantly over two well-known algorithms.

Transforming Pre-service Teachers into Data-Driven Educators: A Developmental Research

  • Huijin SEOK ;Jiwon LEE ;Eunjeong SONG ;Jeongmin LEE
    • Educational Technology International
    • /
    • v.24 no.2
    • /
    • pp.169-202
    • /
    • 2023
  • This study aims to develop instructional design strategies included in educational programs that can effectively improve the educational data literacy of pre-service teachers. We used the design and development model proposed by Richey and Klein and investigated its internal and external validity. Internal validity assessment involved the input of five experts who evaluated the initial instructional strategies. We conducted an educational data literacy education program with 29 pre-service teachers from Korean colleges and graduate schools for external validity. The effectiveness of the program was verified by the Wilcoxon Rank Sum Test, which revealed a meaningful statistical difference between Wilcoxon Rank Sum Test post-scores after the four weeks of online classes. Therefore, this study developed instructional strategies followed by the steps of data-based decision-making: the final instructional strategies encompass 21 strategies, categorized for implementation before, during, and after classes, accompanied by 38 detailed guidelines. This approach bears notable significance as it encapsulates actionable and effective instructional strategies thoughtfully tailored to the unique circumstances and educational setting of the field, as well as the specific characteristics and requirements of the learners.

The Effect of the Problem-Based Learning on Critical Thinking Disposition, Academic Self-Efficacy and Self-Leadership of Nursing Students -Diagnostic Tests and Nursing- (문제중심학습(Problem- Based Learning)이 간호대학생의 비판적 사고성향, 학업적 자기효능감 및 셀프리더십에 미치는 효과 -진단검사와 간호 교과목 중심으로-)

  • Lee, Oi-Sun
    • Journal of Digital Convergence
    • /
    • v.18 no.5
    • /
    • pp.279-285
    • /
    • 2020
  • Purpose :This study intends to test the effects of Problem-based learning on critical thinking disposition, academic self-efficacy and self-leadership for undergraduate nursing students. Methods: A one group pre-post design was applied to four diagnostic test and nursing for 4 times(eight hours) of 26 nursing students. Data were collected between August 29 and December 10, 2019. Data were analyzed by frequencies, Kolmogorov-Smirnov, paried t-test, Wilcoxon signed-rank test using SPSS/WIN 23.0. Results: Problem-based learning was significantly increasing critical thinking disposition(t=-2.16, p=.041) and Academic self-efficacy(z=-2.36, p=.018), but self-efficacy(t=-.16, p=.875) was no significantly. Conclusion: Based on this study, it is suggested that nursing students should develop their core competency by applying problem-based learning to various subject