• Title/Summary/Keyword: rank analysis

Search Result 1,409, Processing Time 0.026 seconds

Rank-Size Distribution with Web Document Frequency of City Name : Case study with U.S incorporated places of 100,000 or more population (인터넷 문서빈도를 통해 본 도시순위규모에 관한 연구 -미국 10만 이상의 인구를 갖는 도시들을 사례로-)

  • Hong, Il-Young
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.3
    • /
    • pp.290-300
    • /
    • 2007
  • In this study, web document frequency of city place name is analyzed and it is used as the dataset for rank-size analysis. The search keywords are compared in the context of spatial meaning and the different domain corpus is applied. The acquired search results are applied for the further analysis. Firstly, the rank-size analysis is applied to compare the result between population and document frequency. Secondly, in case of correlation analysis, the significant changes are revealed when the spatial criteria for search keywords are increased. In case of corpus, COM, NET, and ORG shows the higher coefficient values. Lastly, the cluster analysis is applied to classify the list of cities that shows the similarity and difference. These analyses have a significant role in representing the rank-size distribution of city names that are reflected on the web documents in the information society.

  • PDF

Sensitivity Analysis of Creep and Shrinkage Effects of Prestressed Concrete Bridges (프리스트레스트 콘크리트 교량의 크리프와 건조수축효과의 민감도 해석)

  • 오병환;양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.656-661
    • /
    • 1998
  • This paper presents a method of statistical analysis and sensitivity analysis of creep and shrinkage effects in PSC box girder bridges. The statistical and sensitivity analyses are performed by using the numerical simulation of Latin Hypercube sampling. For each sample, the time-dependent structural analysis is performed to produce response data, which are then statistically analyzed. The probabilistic prediction of the confidence limits on long-term effects of creep and shrinkage is then expressed. Three measures are examined to quantify the sensitivity of the outputs to each of the input variables. These are rank correlation coefficient(RCC), partial rank correlation coefficient(PRCC) and standardized rank regression coefficient(SRRC) computed on the ranks of the observations. Probability band widens with time, which indicates an increase of prediction uncertainty with time. The creep model uncertainty factor and the relative humidity appear as the most dominant factors with regard to the model output uncertainty.

  • PDF

A Study of the Job Satisfaction of Clinical Nurses Related to Nurse Staffing (간호등급별 병원 간호사 직무만족 조사)

  • Kim, Jong-Gyeong;Park, Seong-Ae
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.9 no.4
    • /
    • pp.529-539
    • /
    • 2003
  • Purpose : The objective of this research is to explore the job satisfaction of clinical nurses by the rank of nurse staffing in order to provide effective management for nurses. Method : The research has been conducted on three hundred twenty nurses working at tertiary eight hospitals which were from 2nd rank of nurse staffing to 5th. rank of nurse staffing in Seoul, from August 1 to September 30 of 2003, through survey. For the experimental tools, used Park-Yoon's job satisfaction for nurses(1992) which was modified Stamp's job satisfaction test(1978). The acquired data were analyzed through SPSS program using descriptive method, $x^2$-test, ANCOVA, and LSD. Results : Overall job satisfaction of nurses showed fairly high level of 3.17; in the order of high score, 3.84 for interaction, 3.00 for autonomy, 2.63 for administration. Analysis based of the rank of nurse staffing showed that hospitals of 2nd rank and 3rd. rank of nurse staffing which were higher ratio of patient vs nurse were more satisfied with nurses' job satisfaction than other nurses who were 4th. rank and 5th. rank of nurse staffing. Conclusion : The result of this study revealed that hospital which was higher the rank of nurse staffing was more influenced of nurses' job satisfaction and especially interaction, administration and autonomy which were sub-category of job satisfaction were different among the ranks of nurse staffing.

  • PDF

Horse race rank prediction using learning-to-rank approaches (Learning-to-rank 기법을 활용한 서울 경마경기 순위 예측)

  • Junhyoung Chung;Donguk Shin;Seyong Hwang;Gunwoong Park
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.239-253
    • /
    • 2024
  • This research applies both point-wise and pair-wise learning strategies within the learning-to-rank (LTR) framework to predict horse race rankings in Seoul. Specifically, for point-wise learning, we employ a linear model and random forest. In contrast, for pair-wise learning, we utilize tools such as RankNet, and LambdaMART (XGBoost Ranker, LightGBM Ranker, and CatBoost Ranker). Furthermore, to enhance predictions, race records are standardized based on race distance, and we integrate various datasets, including race information, jockey information, horse training records, and trainer information. Our results empirically demonstrate that pair-wise learning approaches that can reflect the order information between items generally outperform point-wise learning approaches. Notably, CatBoost Ranker is the top performer. Through Shapley value analysis, we identified that the important variables for CatBoost Ranker include the performance of a horse, its previous race records, the count of its starting trainings, the total number of starting trainings, and the instances of disease diagnoses for the horse.

Rank Tests for Multivariate Linear Models in the Presence of Missing Data

  • Lee, Jae-Won;David M. Reboussin
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.319-332
    • /
    • 1997
  • The application of multivariate linear rank statistics to data with item nonresponse is considered. Only a modest extension of the complete data techniques is required when the missing data may be thought of as a random sample, and an appropriate modification of the covariances is derived. A proof of the asymptotic multivariate normality is given. A review of some related results in the literature is presented and applications including longitudinal and repeated measures designs are discussed.

  • PDF

An Analysis of Correlation between Personality and Visiting Place using Spearman's Rank Correlation Coefficient

  • Song, Ha Yoon;Park, Seongjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1951-1966
    • /
    • 2020
  • Recent advancements in mobile device technology have enabled real-time positioning so that mobile patterns of people and favorable locations can be identified and related researches have become plentiful. One of the fields of research is the relationship between the object properties and the favored location to visit. The object properties of a person include personality, which is a major property jobs, income, gender, and age. In this study, we analyzed the relationship between the human personality and the preference of the location to visit. We used Spearman's Rank correlation coefficient, one of the many methods that can be used to determine the correlation between two variables. Instead of using actual data values, Spearman's Rank correlation coefficient deals with the ranks of the two data sets. In our research, the personality and the location data sets are used. Our personality data is ranked in five ranks and the location data is ranked in 8 ranks. Spearman's Rank correlation coefficient showed better results compared to Pearson linear correlation coefficient and Kendall rank correlation coefficient. Using Spearman's correlation coefficient, the degree of the relationship between the personality and the location preference is found to be 43%.

Use of big data analysis to investigate the relationship between natural radiation dose rates and cancer incidences in Republic of Korea

  • Joo, Han Young;Kim, Jae Wook;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1798-1806
    • /
    • 2020
  • In this study, we investigated whether there is a significant relationship between the natural radiation dose rate and the cancer incidences in Korea by using a big data analysis. The natural dose rate data for this analysis were the measurement data obtained from the 171 monitoring posts of the 113 administrative districts in Korea over the 10 years from 2007 to 2016. The relative cancer incidences for this analysis were the difference in the cancer patients per hundred thousand people year-on-year in the administrative districts with the five highest and the five lowest natural gamma dose rates each year over the same period. To analyze the correlation between the two variables, Spearman's rank correlation coefficient between the two rates was derived using R, a well-known big data analysis tool. The analysis showed that Spearman's rank correlation coefficient was more than 0.05 and that the correlation between the two variables was not statistically significant.

Comparison between Social Network Based Rank Discrimination Techniques of Data Envelopment Analysis: Beyond the Limitations (사회 연결망 분석 기반 자료포락분석 순위 결정 기법간 비교와 한계 극복 방안에 대한 연구)

  • Hee Jay Kang
    • Journal of Information Technology Services
    • /
    • v.22 no.1
    • /
    • pp.57-74
    • /
    • 2023
  • It has been pointed out as a limitation that the rank of some efficient DMUs(decision making units) cannot be discriminated due to the relativity nature of efficiency measured by DEA(data envelopment analysis), comparing the production structure. Recently, to solve this problem, a DEA-SNA(social network analysis) model that combines SNA techniques with data envelopment analysis has been studied intensively. Several models have been proposed using techniques such as eigenvector centrality, pagerank centrality, and hypertext induced topic selection(HITS) algorithm, but DMUs that cannot be ranked still remain. Moreover, in the process of extracting latent information within the DMU group to build effective network, a problem that violates the basic assumptions of the DEA also arises. This study is meaningful in finding the cause of the limitations by comparing and analyzing the characteristics of the DEA-SNA model proposed so far, and based on this, suggesting the direction and possibility to develop more advanced model. Through the results of this study, it will be enable to further expand the field of research related to DEA.

HIGHER ORDER ITERATIONS FOR MOORE-PENROSE INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.171-184
    • /
    • 2014
  • A higher order iterative method to compute the Moore-Penrose inverses of arbitrary matrices using only the Penrose equation (ii) is developed by extending the iterative method described in [1]. Convergence properties as well as the error estimates of the method are studied. The efficacy of the method is demonstrated by working out four numerical examples, two involving a full rank matrix and an ill-conditioned Hilbert matrix, whereas, the other two involving randomly generated full rank and rank deficient matrices. The performance measures are the number of iterations and CPU time in seconds used by the method. It is observed that the number of iterations always decreases as expected and the CPU time first decreases gradually and then increases with the increase of the order of the method for all examples considered.

Comparison of Edge Detection using Linear Rank Tests in Images (영상에서 선형순위검정법을 이용한 에지검출 비교)

  • Lim Dong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.17-26
    • /
    • 2005
  • In this paper we propose three nonparametric tests such as Wilcoxon test, Median test and Van der Waerden test, based on linear rank statistics for detecting edges in images. The methods used herein are based on detecting changes in gray-levels obtained using an edge-height parameter between two sub-regions in a 5$\times$5 window We compare and analysis the performance of three statistical edge detectors in terms of qualitative measures with the edge maps and objective, quantitative measures.

  • PDF