• Title/Summary/Keyword: ranging sensor

Search Result 235, Processing Time 0.025 seconds

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Multisensor Data Fusion for Intelligent Robot Systems (지능 로봇 시스템을 위한 다중 센서 데이타 Fusion)

  • Kim, W.J.;Ko, J.H.;Chung, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.787-794
    • /
    • 1991
  • The objective of this paper is to survey the state of the art of multisensor data fusion in intelligent robot systems. The variety of approaches to the problem of multisensor fusion ranging from general frameworks to robotic applications is surveyed. We have classified them into three categories : sensor modeling, fusional methods, and robotic applications. Also we present research trend and future direction of multisensor fusion.

  • PDF

Statistical Analysis of Ranging Errors by using $\beta$-Density Angular Errors due to Heading Uncertainty ($\beta$ - 분포를 갖는 센서의 방향각 오차로 인한 거리 오차의 통계적 분석)

  • 김종성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.100-106
    • /
    • 1984
  • Traditional methods for estimating the location of underwater target, i.e. the triangulation method and the wavefront curvature method, have been utilized. The location of a target is defined by the range and the bearing, which estimates can be obtained by evaluating the time delay between neighboring sensors. Many components of error occur in estimating the target range, among which the error due to the fluctuation of heading angle is outstanding. In this paper, the wavefront curvature method was used. We considered the error due to the heading fluctuation as the $\beta$-density process, from which we analized the range estimates with $\beta$-density function exist in some finite limits, and its mean value and variation are depicted as a function of true range and heading fluctuation. Given heading angles and sensor separation, maximum estimated heading errors are presented as a function of true range.

  • PDF

TROPICAL TREE MORPHOLOGY USING AIRBORNE LIDAR DATA

  • JANG, Jae-Dong;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.676-679
    • /
    • 2006
  • Mangrove crowns were delineated using active sensor LIDAR (LIght Detection And Ranging) data by a crown delineating model developed in this study. LIDAR data were acquired from airborne survey by a helicopter for the estuary of Macouria in the northeast coast of French Guiana. The canopy height image was derived from LIDAR vector data by calculating the difference between ground and non-ground data. The mangrove site in the study area was classified to three sectors by the time of mangrove settlement; Mangrove 1986, 2002 and 2003. The estimated crown of Mangrove 1986 was reliable defined for their size, number and volume because of larger crown size and bigger variation of crown height. The tree crown size of Mangrove 2002 and 2003 by the model was overestimated and the number of trees was much underestimated. The estimated crown was not for single crown but a crown group due to homogenous crown height and spatial resolution of LIDAR data. However the canopy height image derived from LIDAR data provided three-dimensional information of mangroves.

  • PDF

Synthesis of Porous Carbon Particles for the Absorption of Mercury (액상수은 제어를 위한 다공성 탄소입자 제조에 관한 연구)

  • Lee, Jung-Min;Kang, Shin-Jae;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.305-305
    • /
    • 2009
  • The carbon nano-structured materials could be applied to the fields of advanced fillers, templates, electrode materials, sensor, storage, and absorption materials. The polyacrylonitrile (PAN) based carbon nano-particles provide the remarkable properties of high specific surface area, large pore volume, chemical inertness, and good mechanical stability. In this study, well-defined carbon nano-particles were obtained through pyrolysis of polyacrylonitrile based particles. The precursor nano-particles were prepared by modified aqueous dispersion polymerization using hydrophilic poly(vinyl alcohol) in a water/ N,N-dimethylformamide mixture media. Synthesized precursor nanoparticles have relatively monodisperse particles ranging 80 ~ 250nm. Stable spherical particles are obtained without coagulum or secondary particles in our system. The characteristic of the carbon nanoparticles were investigated in terms of surface area, morphology, and size distribution.

  • PDF

A Dipstick-Type Electrochemical Immunosensor for The Detection of The Organophosphorus Insecticide Fenthion

  • Cho, Young-Ae;Cha, Geun-Sig;Lee, Yong-Tae;Lee, Hye-Sung
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.743-746
    • /
    • 2005
  • A dipstick-type immunochemical biosensor for the detection of the organophosphorus insecticide fenthion was developed using a screen-printed electrode system as an amperometric transducer with polyclonal antibodies against fenthion as a bioreceptor. The assay of the biosensor involved competition between the pesticide in the sample and pesticide-glucose oxidase conjugate for binding to the antibody immobilized on the membrane. This was followed by measurement of the activity of the bound enzyme by the supply of the enzyme substrate (glucose) and amperometric determination of the enzyme reaction product ($H_2O_2$). The activity of the bound enzyme was inversely proportional to the concentration of pesticide. The optimized sensor system showed a linear response against the logarithm of the pesticide concentration ranging from $10^{-2}$ to $10^3\;{\mu}g/L$.

A Design of a Mobile Robot for Blind Guidance (맹인 안내용 모빌로보트의 설계)

  • 유상열;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.33-42
    • /
    • 1985
  • In this paper, a mobile robot is designed for the blind guidance. This system is composed of an Ultrasonic Ranging Vnit, PWM Vnit, Optical Encoder Vnit. Specilly we adapted Distance Comparison Measurement Method (DCMM) in order to compensate for the error resulted from atmospheric conditions, and PWM unit for the vehicle control and Optical encoder unit for the correct locomotion control. This system is processed, using MCS-85 microcomputer, much of information on surrounding conduitions in real time. We rotated ultrasonic sensor for many sifted data acquisition and used tone generator for the Man-Machine Communication. As a result, the measurement error of the distance is about 1cm, the distance measurement could be detected 0.2m to 6m. The locomotion speed is 0.4m/sec and we examined its practical use.

  • PDF

MURO - Mangpo high school Unmanned Robotic Observatory

  • Kim, Hyunjong;Pak, Soojong;Kim, Youngjong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2016
  • We introduce the characteristics and performance of the 0.25m telescope at Mangpo high school Unmanned Robotic Observatory (MURO) which was established in Yangpyeong-gun, Gyeongi-do, KOREA in 2015 January. MURO system included Astrohaven 2.1m non-rotation fiberglass clamshell dome, Paramount MEII mount, Takahashi CCA 0.25m wide field telescope, FLI PL 16803 4K CCD with 7-positions filter wheel system, all sky camera and point grey wide field camera, IR 4 chanel heat sensor camera for security, DAVIS realtime weather cast, and power controled by ARS system. All control softwares are from off-the-shelf products based on Windows 7 OS to be easily operated and maintained. We expect to perform variety of science programs ranging from supernovae follow-up observation to narrow band imaging survey as well as science class activities at Mangpo high school.

  • PDF

An Experimental Study on the Combustion Characteristics with Hydrogen Enrichment in a Dump Combustor (수소 혼합에 따른 덤프 연소기내의 연소 특성에 관한 실험적 연구)

  • Kim, Dae-Hee;Hong, Jung-Goo;Shin, Hyun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2977-2983
    • /
    • 2008
  • The combustion characteristics of a partially premixed flame in a dump combustor were studied to determine the effects of hydrogen enrichment in propane. Bluff-body was used for flame stabilization. Fuel mixtures containing a hydrogen mole fraction ranging from 0.1 to 0.5 were burnt at ambient pressure within a quartz chamber. Tests were carried out keeping the total reactant flow rate by adjusting the fuel and air flow rates. The fluctuations of pressure were measured by piezoelectric pressure sensor. The instantaneous flame structure and OH chemiluminescence images were described by High-speed Intensified Charged Coupled Device (HICCD) camera and Intensified Charged Coupled Device (ICCD) camera. The present results show that hydrogen enrichment in fuel changed the location of primary reaction zone from inner recirculation zone to turbulent shear layer and pressure signal. The reason is that chemical aspects take precedence over flow aspects in the hydrogen-enriched flame.

  • PDF