다차원 공간 객체를 위한 영역 질의는 다차원 공간상에서 질의 영역과 교차 또는 포함되는 객체들을 검색하는 가장 기본적인 공간 연산이다. 영역 질의 처리를 위한 인덱스 기법으로서 공간 순서화 곡선을 이용하여 다차원 공간 객체의 MBR 정보를 1차원 값으로 변환하여 저장하는 DOT(DOuble Transformation) 인덱스 기법이 알려져 있다. 이 기법은 데이터베이스 시스템의 주색인 기법을 그대로 적용할 수 있는 장점을 갖으나, 중간 공간에 설정된 다차원 질의 영역을 최종 공간상의 1차원 값의 집합으로 변환하는 공간 변환 연산에 대한 오버헤드가 매우 크다는 문제점이 있으며, 원 공간을 2차원 이상으로 확장하여 적용할 수 있는 구체적인 영역 질의 방법이 연구된 바 없다. 본 논문에서는 다차원 공간 질의 영역 상의 공간 순서화 곡선의 규칙성을 분석함으로써 공간 변환 연산의 횟수를 대폭 감소시킨 효율적인 다차원 공간 영역 질의 처리 기법을 제안한다. 제안된 기법에서는 공간 변환 연산의 비용을 감소시키기 위하여 질의 영역을 공간 순서화 곡선이 연속 운행되는 최대 크기의 쿼터로 분할하는 쿼터 분할 기법을 사용한다. 제안된 기법에 의한 다차원 영역 질의 처리 과정을 시각적으로 확인할 수 있는 시뮬레이터를 구현하였으며, 이를 이용한 성능평가 결과를 보였다.
이동객체에 대한 연속 범위 질의(Continuous Range Query)의 응용프로그램이 급속도로 확장되면서 이차원정보를 넘어서 고차원 공간 데이타에 대한 처리를 요구하고 있다. 만약 고차원 데이타에 대한 중첩되어지는 연속 범위 질의의 정보를 기존의 색인으로 구성한다면 객체의 수와 질의의 수가 증가함에 따라 질의처리성능이 저하된다. 본 논문은 이러한 문제점을 해결하기 위하여 PAB(Projected Attribute Bit)-기반의 질의색인방법을 제안한다. 제안하는 기법은 성능향상을 위하여 질의의 정보를 각 속성 축에 투영이라는 작업을 통하여 고차원의 데이타를 1차원 정보들로 변환하고 이러한 정보를 비트단위로 구성하였다. 또한 제안하는 질의색인은 보다 효율적인 질의의 처리를 위하여 점진적인 갱신(Incremental Update)을 지원한다. 다양한 성능평가 및 분석을 통하여 제안하는 방법이 최근에 연구된 CES-기반의 질의색인 기법보다 더 나은 확장성(Scalability)을 가짐을 입증한다.
Recently, the research on database outsourcing has been actively done with the popularity of cloud computing. However, because users' data may contain sensitive personal information, such as health, financial and location information, the data encryption methods have attracted much interest. Existing data encryption schemes process a query without decrypting the encrypted databases in order to support user privacy protection. On the other hand, to efficiently handle the large amount of data in cloud computing, it is necessary to study the distributed index structure. However, existing index structure and query processing algorithms have a limitation that they only consider single-column query processing. In this paper, we propose a grid-based multi column indexing scheme and an encrypted query processing algorithm. In order to support multi-column query processing, the multi-dimensional index keys are generated by using a space decomposition method, i.e. grid index. To support encrypted query processing over encrypted data, we adopt the Hilbert curve when generating a index key. Finally, we prove that the proposed scheme is more efficient than existing scheme for processing the exact and range query.
본 논문에서는 유비쿼터스 센서 네트워크 환경에서의 공간 영역 질의를 효과적으로 처리하는 공간 영역 집계 인덱스 기법을 제안한다. 새로운 정보화 패러다임인 네트워킹과 컨버전스 기반의 유비쿼터스 환경의 중요성이 부각되면서 유비쿼터스 센서 네트워크 환경에서의 에너지 효율적인 실시간 공간질의에 대한 연구가 활발히 진행되고 있다. 센서 네트워크에서 공간영역질의는 사용자가 지정한 일정한 시간 동안의 특정 지리적 영역의 온도, 습도 등 스칼라 데이터를 감지한다. 공간 질의를 효과적으로 수행하기 위하여 Rectangle 기반의 SPIX기법 등 공간 인덱스 기법들이 많이 진행되었지만 기존 연구에서는 공간 영역질의의 질의 결과 값 전달 경로를 질의 전달 경로의 역방향으로 지정하였다. 센서 네크워크의 공간 영역 질의에서 질의 영역 내의 센서들은 대부분이 인접되어 있지만 질의 전달 경로가 틀리면 질의 영역 내에서 집계되지 못하고 전달되므로 불필요한 에너지를 낭비하게 된다. 본 논문에서는 유비쿼터스 센서 네트워크에서 공간 영역 질의를 수행 할 때 질의 영역 내에서 센서 노드들 간의 통신거리를 고려하여 질의 결과 값 전달 경로를 재선정하고, 적응적으로 집계 영역 내에서 집계연산을 하여 질의 결과 값을 전달하는 인덱스 기법을 제안한다. 성능평가를 통하여 제안 기법이 기존 기법보다 우월함을 보여주었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권2호
/
pp.597-618
/
2019
Categorical range aggregation, which is conceptually equivalent to running a range aggregation query separately on multiple datasets, returns the query result on each dataset. The challenge is when the number of dataset is as large as hundreds or thousands, it takes a lot of computation time and I/O. In previous work, only a single dimension of the range restriction has been solved, and in practice, more applications are being used to calculate multiple range restriction statistics. We proposed MCRI-Tree, an index structure designed to solve multi-dimensional categorical range aggregation queries, which can utilize main memory to maximize the efficiency of CRA queries. Specifically, the MCRI-Tree answers any query in $O(nk^{n-1})$ I/Os (where n is the number of dimensions, and k denotes the maximum number of pages covered in one dimension among all the n dimensions during a query). The practical efficiency of our technique is demonstrated with extensive experiments.
Existing methods to process continuous range queries are not scalable. In particular, as the number of continuous range queries on a large number of moving objects becomes larger, their performance degrades significantly. We propose a novel query indexing method called the projected attribute bit (PAB)-based query index. We project a two-dimensional continuous range query on each axis to get two one-dimensional bit lists. Since the queries are transformed to bit lists and query evaluation is performed by bit operations, the storage cost of indexing and query evaluation time are reduced significantly. Through various experiments, we show that our method outperforms the containment-encoded squares-based indexing method, which is one of the most recently proposed methods.
인터넷과 인트라넷의 확산에 따라, 스트림 데이터 처리(stream data processing)와 같은 새로운 분야가 등장하게 되었다. 스트림 데이터는 실시간적이고 연속적으로 생성된다. 스트림 데이터 환경에서는 복수 개의 질의들이 미리 등록되고 후에 도착되는 데이터는 등록된 질의들에 의하여 평가된다. 따라서 질의 성능을 향상시키기 위하여, 스트림 데이터 처리 시스템을 위한 다양한 연속성 질의 색인 방법들이 제안되었다. 본 논문에서는 스트림 데이터를 위한 질의 색인에 대하여 다룬다. 일반적으로, 스트림 질의는 간격 조건식을 포함하고 있다. 따라서, 간격 조건식을 이용하여, 질의들을 색인화할 수 있다. 이 논문에서, 탐색 속도를 향상시키기 위하여, Interval Skip List를 수정한 효율적인 질의 색인 방법, QUISIS를 제안한다. QUISIS는 최근 데이터 값이 근 미래에 도착하는 값과 비슷하다는 지역성을 활용한다. 성능 평가를 통하여, 본 논문에서 제안하는 기법의 효율성을 보인다.
데이터 스트림 환경에서는 지속적으로 입력되는 데이터에 대한 실시간 처리를 수행하기 위하여 범위를 갖는 다수의 질의를 시스템에 미리 등록한다. 등록된 질의를 입력 스트림에 따라 빠르게 검색하기 위해 질의 색인 기법을 사용하는데, 질의 색인은 메인 메모리 기반에서 동작하기 위해 색인 정보의 저장 비용이 낮아야 하고 빠른 질의 탐색을 실시해야 한다. 본 논문에서는 다수의 범위 질의에 대하여 색인 정보의 저장 비용이 낮고 빠른 질의 탐색을 실시하는 질의 색인 기법으로 LVC-based(Limited Virtual Construct-based) 기법을 제안한다. 해시기반으로 동작하는 LVC-based 색인 기법은 입력 스트림의 범위를 가상의 분할 구조로 나눈 LVC를 이용한다. 각 LVC는 식별자가 할당되고 각 LVC에 구간에 해당하는 범위 질의를 저장하며 색인을 실시한다. LVC-based 기법은 입력 스트림의 범위가 길고 범위가 짧은 다수의 질의를 색인할 때 저장비용과 탐색 비용에서 좋은 효율을 보이며 이는 기 제안된 CEI-based 색인 기법과의 비교를 통하여 입증하였다.
최근 CPU의 속도는 메모리의 속도에 비해 훨씬 빠르게 향상되었다. 따라서 주기억 장치의 접근이 주기억장치 데이터베이스 시스템의 성능에서 병목현상으로 나타나고 있다. 기억장치 접근 속도를 줄이기 위해 캐시메모리를 이용하지만, 캐시메모리는 요구되는 데이터가 캐시에서 찾을 수 있는 경우에만 기억장치 접근속도를 줄일 수 있다. 본 논문에서는 $CST^*$-트리라는 범위질의를 위한 새로운 캐시 적응 T-트리 색인구조를 제안한다. $CST^*$-트리는 색인 엔트리를 저장하지 않는 축소된 내부노드들을 캐시메모리에 올려 사용함으로써 캐시메모리의 활용도를 높인다. 그리고 인접한 단말노드들과 내부 색인노드들을 링크포인터를 통해 서로 연결함으로써 색인 엔트리들의 순차적 접근을 가능하도록 한다. 본 논문에서는 성능평가를 위한 비용 모델을 개발하고, 이를 이용하여 캐시미스 발생 횟수를 평가하였다. 그 결과 단일키 값 검색에서는 기존의 캐시만을 고려한 CST-트리에 비해 약 20~30%의 캐시미스 발생 횟수가 감소하였고, 범위질의에서는 기존의 범위질의만을 고려한 색인구조인 $T^*$-트리에 비해 약 10~20%의 캐시미스 발생 횟수가 감소하였다.
이동체는 시간에 따라 위치를 변경하는 특성과 이동체의 경로는 궤적으로 표현되는 특성을 가진다. 이동체 궤적 데이타에 대한 저장 및 검색을 처리하는 이동체 데이타베이스 시스템에서는 효율적인 데이타 접근 방법이 필요하다. 특히 궤적 검색을 위한 대표적인 질의 유형인 복합 질의는 영역내의 궤적 검색과 궤적의 일부분을 추출하는 과정을 포함한다. 그러나, 영역 질의에 우수한 색인 방법은 부분 궤적을 추출하기 위한 비용이 높은 단점을 가진다. 반면, 궤적 질의를 위한 색인 방법의 경우 노드간의 중첩이 매우 높아 영역내의 궤적 검색 비용이 높은 단점이 있다. 이 논문에서는 이동체 데이타베이스에서 복합 질의를 효율적으로 처리하기 위해 TR-tree를 제시한다. TR-tree는 궤적 질의를 위해 궤적 보존 및 단말 노드의 용량을 증가시키고, 영역 질의 처리를 위해 사장영역과 MBB(Minimum Bounding Box)의 중첩을 감소시키는 논리적 궤적 분할을 지원하는 특징을 가진다. 실험 평가에서 TR-tree는 STR-tree, TB-tree의 복합 질의 성능 비교에서 평균 25%의 노드 접근 회수를 감소시킨다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.