• Title/Summary/Keyword: range estimation

Search Result 2,007, Processing Time 0.043 seconds

The Study of DoA Estimation in Frequency Domain in Automotive Radar System (차량용 레이더 시스템에서 주파수 영역의 도래각 추정 기법에 관한 연구)

  • Choi, Jung-hwan;Choi, Ji-won;Kim, Seong-cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Convenience and safety are the key words for the automotive driving and various sensor technologies have been studied for enhanced perception of driving environments. In frequency modulated continuous wave (FMCW) radar systems, single antenna is enough for range and velocity detection of multiple targets. Multiple array antenna is needed for estimating direction of arrival(DoA). Using DoA estimation algorithm in time domain as in the conventional systems, it is difficult to distinguish vehicles lie in the same angle. In order to facilitate the enhanced angle estimation, DoA estimation algorithm is applied in frequency domain. In this paper, the method for applying multiple signal classification(MUSIC) algorithm in frequency domain is suggested and the performance is analyzed.

Low Complexity Frequency Offset Estimation Using Partial Correlation (부분상관을 이용한 저 복잡도의 주파수 오차 추정기법)

  • Park, Ji-Eun;Jeong, YeongWeon;Song, InJae;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1861-1868
    • /
    • 2014
  • In wireless communication systems, a frequency offset exist at the received signal due to the transmitter-receiver oscillator mismatch and Doppler effect in mobile environments. Those offsets rotate the received signal's phase and degrade the receiver performance. Hence, estimation and compensation of the frequency offset is crucial at the receiver. This paper proposes a new frequency offset estimation technique based on partial correlation. The proposed method requires less computational complexity than that of the conventional method. In addition, since the proposed one can estimate a wide range of frequency offset without estimation accuracy loss, the application of the method is desirable for the communication environments that have a large frequency offset. In order to verify the performance of our proposed scheme, a series of computer simulations have been carried out and compared against those of the conventional method.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Transmission Modeling and Verification for the Inverse Estimation of Electronic Warfare Threats (전자전 위협체 역추적을 위한 송수신 모델링 및 검증)

  • Park, So Ryoung;Jeong, Hoe Chang;Kwon, Jae Wan;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.112-123
    • /
    • 2017
  • Research for the inverse estimation of RF threats and the efficient electronic attack based on the parameters of the electronic information has been active in the electronic warfare (EW) situations. In this paper, an EW transmission simulator is constructed from the modeling of radar threats, EW receivers, and propagation environments with the collected electronic information in order to verify the performance of the inverse estimation algorithm in various and practical EW situations. In simulation results, we show that the range tracking error and angle tracking error are produced within ten meters and one degree, respectively. And also, we show that the changing relations between the angle tracking error and the parameters of the monopulse angle tracking radar such as the beamwidth and squint angle in simulation results correspond with those in the theoretical modeling. Accordingly, the constructed EW simulator can be used to observe the modifying characteristics of the electronic information in transmission environments, and then, to evaluate the performance of the inverse estimation system in various EW situations.

Gaze-Manipulated Data Augmentation for Gaze Estimation With Diffusion Autoencoders (디퓨전 오토인코더의 시선 조작 데이터 증강을 통한 시선 추적)

  • Kangryun Moon;Younghan Kim;Yongjun Park;Yonggyu Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.51-59
    • /
    • 2024
  • Collecting a dataset with a corresponding labeled gaze vector requires a high cost in the gaze estimation field. In this paper, we suggest a data augmentation of manipulating the gaze of an original image, which improves the accuracy of the gaze estimation model when the number of given gaze labels is restricted. By conducting multi-class gaze bin classification as an auxiliary task and adjusting the latent variable of the diffusion model, the model semantically edits the gaze from the original image. We manipulate a non-binary attribute, pitch and yaw of gaze vector to a desired range and uses the edited image as an augmented train data. The improved gaze accuracy of the gaze estimation network in the semi-supervised learning validates the effectiveness of our data augmentation, especially when the number of gaze labels is 50k or less.

Analysis of the Linear Amplifier/ADC Interface in a Digital Microwave Receiver (디지털 마이크로파 수신기에서의 선형 증폭기와 ADC 접속 해석)

  • Lee, Min Hyouck;Kim, Sung Gon;Choi, Hee Joo;Byon, Kun Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.1
    • /
    • pp.52-59
    • /
    • 1999
  • Digital microwave wideband receiver including linear amplifier, analog-to-digital converter(ADC) and digital signal processor is able to analyze its performance using sensitivity and dynamic range of system. Determination of gain, third-order intermodulation products and ADC characteristics and design criteria for the linear amplifier chain is essential problem for sensitive and dynamic range. Also, if there are two signals with frequencies very close, digital signal processor must be able to separate the two signals. In this paper, we measured dynamic range as gain was changed and determined gain value for the proper sensitivity and dynamic range and high resolution spectrum estimation was used to separate two close signals.

  • PDF

A Novel Multihop Range-Free Localization Algorithm Based on Reliable Anchor Selection in Wireless Sensor Networks

  • Woo, Hyunjae;Lee, Chaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.574-592
    • /
    • 2016
  • Range-free localization algorithm computes a normal node's position by estimating the distance to anchors which know their actual position. In recent years, reliable anchor selection research has been gained a lot of attention because this approach improves localization accuracy by selecting the only subset of anchors called reliable anchor. The distance estimation accuracy and the geometric shape formed by anchors are the two important factors which need to be considered when selecting the reliable anchors. In this paper, we study the relationship between a relative position of three anchors and localization error. From this study, under ideal condition, which is with zero localization error, we find two conditions for anchor selection, thereby proposing a novel anchor selection algorithm that selects three anchors matched most closely to the two conditions, and the validities of the conditions are proved using two theorems. By further employing the conditions, we finally propose a novel range-free localization algorithm. Simulation results show that the proposed algorithm shows considerably improved performance as compared to other existing works.

Doppler Frequency Compensated Detection and Ranging Algorithm for High-speed Targets (도플러 주파수가 보상된 고속 표적 탐지 및 레인징 알고리즘)

  • Youn, Jae-Hyuk;Kim, Kwan-Soo;Yang, Hoon-Gee;Chung, Young-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1244-1250
    • /
    • 2010
  • This paper presents a detection and ranging algorithm for a high-speed targets in the high PRF radar. We show, unlike the conventional methods, it firstly estimates Doppler frequency with a quasi-periodic pulse train prior to range processing. The estimated Doppler frequency can compensate the phase error enbeded in the received signal, which makes the signal integrated coherently in the range direction and localizes the target's signiture in low SNR. We present the derivation of the proposed algorithm and discuss how the system parameters such as the range/Doppler sampling condition, processing time and Doppler estimation error affect the performance of the proposed algorithm, which is verified by simulations.

A Study on the Relative Positioning Technology based on Range Difference and Root Selection (신호원과의 거리 차이와 실근 선택 알고리즘을 이용한 상대위치 인식 기술 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.85-91
    • /
    • 2013
  • For location based service and context awareness services, accurate indoor positioning technology is essential. The TDOA method that uses the range difference between signal source and receivers for estimating the location of the signal source, has estimation error due to measurement error. In this paper, a new algorithm is proposed to select the real root among calculated roots using the range difference information, and the estimated position of the signal source shows good accuracy compared to the existing method.

Comparisons of Error Characteristics between TOA and TDOA Positioning in Dense Multipath Environment (다중경로 환경에서의 TOA방식과 TDOA방식의 측위성능 비교)

  • Park, Ji-Won;Park, Ji-Hee;Song, Seung-Hun;Sung, Tae-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.415-421
    • /
    • 2009
  • TOA(time-of-arrival) and TDOA(time-difference-of-arrival) positioning techniques are commonly used in many radio-navigation systems. From the literature, it is known that the position estimate and error covariance matrix of TDOA obtained by GN(Gauss-Newton) method is exactly the same as that of TOA when the error source of the range measurement is only an IID white Gaussian noise. In case of geo-location and indoor positioning, however, multi-path or NLOS(non-line-of-sight) error is frequently appeared in range measurements. Though its occurrence is random, the multipath acts like a bias for a stationary user if it occurs. This paper presents the comparisons of error characteristics between TOA and TDOA positioning in presence of multi-path or NLOS error. It is analytically shown that the position estimate of TDOA is exactly the same as that of TOA even when bias errors are included in range measurements with different magnitudes. By computer simulation, position estimation error and error distribution are analyzed in presence of range bias errors.