• Title/Summary/Keyword: range estimation

Search Result 2,001, Processing Time 0.031 seconds

Uncertainty Estimation of Single-Channel Temperature Estimation Algorithm for Atmospheric Conditions in the Seas around the Korean Peninsula (한반도 주변해역 대기환경에 대한 싱글채널 온도추정 알고리즘의 불확도 추정)

  • Jong Hyuk Lee;Kyung Woong Kang;Seungil Baek;Wonkook Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.355-361
    • /
    • 2023
  • Temperature of the Earth's surface is a crucial physical variable in understanding weather and atmospheric dynamics and in coping with extreme heat events that have a great impact on living organismsincluding humans. Thermalsensors on satellites have been a useful meansfor acquiring surface temperature information for wide areas on the globe, and thus characterization of its estimation uncertainty is of central importance for the utilization of the data. Among various factors that affect the estimation, the uncertainty caused by the algorithm itself has not been tested for the atmospheric environment of Korean vicinity. Thisstudy derivesthe uncertainty of the single-channel algorithm under the local atmospheric and oceanic conditions by using reanalysis data and buoy temperature data collected around Korea. Atmospheric profiles were retrieved from two types of reanalysis data, the fifth generation of European Centre for Medium-Range Weather Forecasts reanalysis of the global climate and weather (ERA5) and Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2) to investigate the effect of reanalysis data. MODerate resolution atmospheric TRANsmission (MODTRAN) was used as a radiative transfer code for simulating top of atmosphere radiance and the atmospheric correction for the temperature estimation. Water temperatures used for MODTRAN simulations and uncertainty estimation for the single-channel algorithm were obtained from marine weather buoyslocated in seas around the Korean Peninsula. Experiment results showed that the uncertainty of the algorithm varies by the water vapor contents in the atmosphere and is around 0.35K in the driest atmosphere and 0.46K in overall, regardless of the reanalysis data type. The uncertainty increased roughly in a linear manner as total precipitable water increased.

Multi-view Video Coding using View Interpolation (영상 보간을 이용한 다시점 비디오 부호화 방법)

  • Lee, Cheon;Oh, Kwan-Jung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.128-136
    • /
    • 2007
  • Since the multi-view video is a set of video sequences captured by multiple array cameras for the same three-dimensional scene, it can provide multiple viewpoint images using geometrical manipulation and intermediate view generation. Although multi-view video allows us to experience more realistic feeling with a wide range of images, the amount of data to be processed increases in proportion to the number of cameras. Therefore, we need to develop efficient coding methods. One of the possible approaches to multi-view video coding is to generate an intermediate image using view interpolation method and to use the interpolated image as an additional reference frame. The previous view interpolation method for multi-view video coding employs fixed size block matching over the pre-determined disparity search range. However, if the disparity search range is not proper, disparity error may occur. In this paper, we propose an efficient view interpolation method using initial disparity estimation, variable block-based estimation, and pixel-level estimation using adjusted search ranges. In addition, we propose a multi-view video coding method based on H.264/AVC to exploit the intermediate image. Intermediate images have been improved about $1{\sim}4dB$ using the proposed method compared to the previous view interpolation method, and the coding efficiency have been improved about 0.5 dB compared to the reference model.

Estimation of Electric Properties of Insulating Silicone Rubbers Added Reinforcing Fillers (보강성 충전제를 첨가한 절연용 실리콘 고무의 전기 특성 평가)

  • Lee, Sung-Ill
    • Elastomers and Composites
    • /
    • v.32 no.5
    • /
    • pp.309-317
    • /
    • 1997
  • Estimation of the dielectric properties of insulating silicone rubbers added reinforcing fillers $(SiO_2,\;0{\sim}140phr)$ are very important to investigate the polymer structure. The characteristies of the dielectric absorption in insulating silicone rubbers were studied in the frequency range from 30Hz to 1MHz at the temperature range from $0{\sim}170^{\circ}C$. In the case of non-filled specimen, the dielectric loss is due to the syloxane which is the main chain of silicone rubber at the low temperature below $50^{\circ}C$ and the frequency at 330Hz, and is due to methyl and vinyl radical over the frequency of 1MHz. It is confirmed that the methyl radical or the vinyl radical becomes thermal oxidation at the high temperature over $100^{\circ}C$ and then the dielectric disperssing owing to the carboxyl radical Is appeared. In the case of filled specimen, the dielectric constant is in creased with the additives of reinforcing fillers due to the effect of interfacial polarization explained by MWS(Maxwell-Wagner-Sillars)'s law. The dielectric loss is decreased by the disturbance of reinforcing fillers that is permeated between networks.

  • PDF

Effect of Dry Deposition on Water Quality -The comparison of several methodologies for estimating dry deposition flux (수질에 대한 대기건식침적의 영향 - 건식침적량 추정 방법론의 비교를 중심으로)

  • Cheong, Jang-Pyo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • A special field experiment has been carried out from March 2001 to June 2001 at the Changhowon in Kyunggi to investigate a better methodology for the estimation of dry deposition of pollutions applicable in Korea. In this study, dry deposition plate was used to measure of total and water soluble acidic mass fluxes, and CPRI(Coarse Particle Rotary Impactor), CI(Cascade Impactor) were also used to measure ambient concentrations in various particle size ranges. Sehmel-Hodgson model was used to estimate dry depostion velocity and Weibull probability distribution function was applied to get generalized particle size distribution for the size fractioned concentration data sampled by CPRI and CI. Atmospheric dry deposition fluxes of mass and ionic matters estimated by the various techniques(one-step, multi-step, equi-concentration, subdivision for only the coarse particle range, applying Weibull distribution function, etc.) were compared to flux data sampled by DDP. It was found out that the deposition fluxes estimation methodology calculated by the each particle size range devided by particle size distribution characteristics and the rapidly changed points of deposition velocity using Weibull probability distribution function was the most applicable.

A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1520-1529
    • /
    • 2013
  • In this paper, we propose and assess the performance of "H infinity filter ($H_{\infty}$, HIF)" and "cost reference particle filter (CRPF)" in the problem of tracking a target based on the measurements of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that we do not need to know the noise statistics of the problem in their applications. The performance of the extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise information is perfectly known for the applications of the EKF. Simulation results show that CRPF outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically varying and nonlinearly modeled states with unknown noise statistics.

Efficiency Optimization Control of IPMSM Drive using SPI Controller (SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

A Study on the Improvement of Annual Runoff Estimation Model (연유출량 추정모형의 개선방안)

  • 이상훈
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • The most significant factor in estimating annual runoff must be the precipitation. But in the previous study, the watershed area instead of precitation was included as an independent variable in regression model in the process of checking accurate data. The criterion of accurate data was the runoff ratio in the range of 20% to 100%. In this study the valid range of evapotranspiration was adopted as a criterion of accurate data and the same data were reexamined. It came up with following model which has a high coefficient of determination and conforms to hydrologic theory. R=-518.25+0.8834P where, R: runoff depth(mm) P: precipitation(mm) This regression model was found to be stable by cross-validation and is proposed as annual runoff estimation model applicable to ungaged small and medium watersheds in Korea.

  • PDF

Machine Learning Approach to Estimation of Stellar Atmospheric Parameters

  • Han, Jong Heon;Lee, Young Sun;Kim, Young kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.2-54.2
    • /
    • 2016
  • We present a machine learning approach to estimating stellar atmospheric parameters, effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]) for stars observed during the course of the Sloan Digital Sky Survey (SDSS). For training a neural network, we randomly sampled the SDSS data with stellar parameters available from SEGUE Stellar Parameter Pipeline (SSPP) to cover the parameter space as wide as possible. We selected stars that are not included in the training sample as validation sample to determine the accuracy and precision of each parameter. We also divided the training and validation samples into four groups that cover signal-to-noise ratio (S/N) of 10-20, 20-30, 30-50, and over 50 to assess the effect of S/N on the parameter estimation. We find from the comparison of the network-driven parameters with the SSPP ones the range of the uncertainties of 73~123 K in Teff, 0.18~0.42 dex in log g, and 0.12~0.25 dex in [Fe/H], respectively, depending on the S/N range adopted. We conclude that these precisions are high enough to study the chemical and kinematic properties of the Galactic disk and halo stars, and we will attempt to apply this technique to Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which plans to obtain about 8 million stellar spectra, in order to estimate stellar parameters.

  • PDF

An Adaptive Estimation for a Tracking System in Hybrid Noise Environments (혼합 잡음 상황에서의 추적 계통의 적응 추정)

  • 박희창;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.3
    • /
    • pp.204-215
    • /
    • 1988
  • This paper deals with the adaptive state estimation which is designed specially for a tracking system containing unknown and/or radomly varying hybride noises to provide an accurate estimate of the system state. The range of discrete vectyor v in finite numbers(N) for this adaptive estimator span the entire possible range of impulse noise levels such as the binomial, the edge, the Tchebyscheff, the binomal-edge and the Tchbyscheff-edge distribution. A feed forward path consisting of zero detector and data selector is incoporated with the conventional adaptive state estimator so as to provide accurate estimations. Despite the large and randomly varying hybrid noises, results of computer simulations for the various discrete vector levels show that this adptive state estimator is turned out to be a good system with relatively small implse errors.

  • PDF

Source Information Estimation Using Enemy's Single-Ping and Underwater Geographic Information in Non-Cooperative Bistatic Sonar (비협동 양상태 소나에서 적함 송신기의 단일 능동 신호와 해저 지형 정보를 이용한 송신기 정보 추정)

  • Lee, Dong-Hwa;Nam, Jong-Geun;Jung, Tae-Jin;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.196-203
    • /
    • 2010
  • The bistatic sonar operations using a spatially-separated source and receiver are classified into cooperative and non-cooperative operations. In the cooperative operation, an active signal of a friendly ship is used and the source information is known previously. In the non-cooperative operation, an active signal of the enemy is used and it is difficult to find out the source information. The source information consists of the range, speed, course and frequency of the source. It gives advantage to operating bistatic sonar. This paper suggests a method of estimating the source information with geographic information in the sea and the single-ping of the enemy. The source range is given using one geographic point. And the source speed, course and the frequency of the enemy's source signal are given using two geographic points. Finally, the validity of the scheme is confirmed through a simulation study.